

PUBLIC

Code Assessment

of the DAI Rates & sDAI Oracle

Smart Contracts

April 26, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Notes 11

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help MakerDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DAI Rates & sDAI Oracle
according to Scope to support you in forming an opinion on their security risks.

MakerDAO implements an interest rate strategy for DAI for the Spark Lend protocol and a price oracle for
SavingsDAI, an ERC-20 representation of Pot positions.

The most critical subjects covered in our audit are functional correctness and precision of arithmetic
operations. Security regarding all the aforementioned subjects is high.

The general subjects covered are specification and documentation.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DAI Rates & sDAI Oracle repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 09 February 2023 ea3f2e1262a1eed8ab702473e3d7121a38dccb05 Initial Version

2 19 April 2023 8a2a04b0b708667326b6a169a072da6115e2638c Second Version

3 24 April 2023 a20c60f83b8b35b18dd3bcba10678f7b5b3005b8 Third Version

For the solidity smart contracts, the compiler version 0.8.10 was chosen.

2.1.1 Excluded from scope
Anything besides DaiInterestRateStrategy.sol and SavingsDaiOracle.sol is out of scope.
The contracts using these are expected to use these contracts correctly.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MakerDAO offers an interest rate strategy and a price oracle for savings DAI that is compatible with
Spark Lend. Savings DAI is a tokenized representation of positions on MakerDAO's Pot contract which
allows users to deposit their DAI to earn interest according to the Dai Savings Rate. Further, an interest
rate strategy for DAI for Spark Lend is implemented that offers borrow rates around the current DAI
Savings Rate under regular conditions.

2.2.1 Price Oracle
The price oracle computes the price of savings DAI shares. Namely, it implements following functionality
from Aave V3's AggregatorInterface:

• latestAnswer(): Computes the latest price by querying the DAI price feed's latest answer and
multiplying it with chi, the rate accumulator in the Pot contract that decides how much a share is
worth in DAI.

• latestTimestamp(): Returns the latest round's timestamp of the DAI oracle.

• latestRound(): Returns the latest round's ID of the DAI oracle.

• getAnswer(): Performs the same computation as latestAnswer() on a given round id using the
DAI oracle's getAnswer() function.

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• getTimestamp(): Gets the timestamp of a given round id.

Other functions are getters for the DAI price feed and MakerDAO's Pot contract.

2.2.2 Interest Rate Strategy
The interest rate strategy is intended to be used by Spark Lend pool that is supplied by a D3M
implementation. Further, is implemented for DAI so that a D3M implementation for the Spark Lend
protocol should be able to unwind as fast as possible in case of debt limit changes downwards by
incentivizing borrowers and lenders to move DAI into the protocol. Hence, it operates in two modes.
Namely, it distinguishes the unhealthy scenario, where the D3M supplied too much (the Spark Lend D3M
ink's debt exceeds the debt limit), from the healthy one, where the D3M is healthy.

Note that the maximum rate and the borrow and supply spreads are constants, while the DSR rate is
queried from Maker's Pot contract. The base rate is defined as

rbase = min(rdsr, rmax − rborrowSpread)
Meaning, that the sum of the base rate and the borrow spread cannot exceed the maximum rate.

Assume the D3M is healthy. The borrow rate is a constant defined as the Dai Savings Rate plus a borrow
spread. While the borrowed amount is below a certain performance value, the supply rate is set to zero.
Once the borrowed amount reaches the performance value, the supply rate is computed as the Dai
Savings Rate plus a supply spread, multiplied with the ratio of the amount, that went over the premium
and the total liquidity (borrows + available capital) in the pool. Hence, the rates can be described as
follows:

rborrow = rbase + rborrowSpread

rsupply = (rbase + rsupplySpread)max(0, cborrowed − cperformance)
cborrowed + cavailable

Note it yields that the borrow rate is always constant. Further, suppliers are only incentivized to supply
capital after a minimum borrow amount is reached. During the times, as the third-party suppliers are not
incentivized, we expect that the D3M provides sufficient DAI for the lending market. However, once the
protocol makes sufficient profits, it will incentivize third party suppliers (as the D3M will have a certain
debt limit).

In case the D3M is unhealthy, meaning that the debt is higher than the debt limit, the D3M will try to wind
down. In that scenario, the interest rate strategy will try to incentivize borrowers to pay back their debt,
and will try to incentivize suppliers to start lending DAI. Hence, the borrow and supply rate will increase
according to the debt ratio of the D3M. More specifically, the rates are defined as

rborrow = rmax − rmax − (rbase + rborrowSpread)
debtRatio

rsupply = cborrowed
cborrowed + cavailable

rborrow

Note, that if the debt ratio increases, the borrow rate increases as a negated inverse function (starting at
the regular borrowing rate). Similarly, the supply rate will increase in terms of the debt ratio, however,
scaled by the utilization ratio. Thus, the higher the utilization, the closer will the supply rate be to the
borrow rate. Ultimately, that leads to the protocol forfeiting potential revenue by sharing it with third-party
supplier to incentivize the D3M's stabilization. Note that the stable borrow rate is always 0.

The interest rate definition described above is implemented in calculateInterestRates().
However, note that the debt ratio and the base rate are both not queried on every interest rate
calculation; but, retrieved from a cache (as these will not change often). The variables can be
recomputed with function recompute() that sets the base rate to the current Dai Savings Rate and
computes the debt ratio as the ratio of the current Ilk.Art and current Ilk.line. It is assumed that
the recomputation is triggered on a regular basis.

Version 22.3 Changes in
The stable fee base rate (SFBR) is now used instead of the DSR. Note that it is assumed that there is a
conversion factor from DSR to SFBR so that

rsfbr = b * rdsr

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

holds.

Further, the assumption that the ilks rate is constant has been lifted. We assume that the conversion
factor is a constant.

Version 32.4 Changes in
Now, in case of a shutdown of the Maker system, the rate will stay constant at the maximum rate.

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Timestamps and Rounds
Note Version 1

The timestamps and round ids returned by the DAI savings oracle are equivalent to the ones of the DAI
oracle. However, it could be that the drip() function on the Pot has not been called for a long time.
Hence, there could be a high mismatch between the freshness timestamp and the actual freshness.

MakerDAO - DAI Rates & sDAI Oracle - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Price Oracle
	2.2.2 Interest Rate Strategy

	2.3 Changes in
	2.4 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Notes
	6.1 Timestamps and Rounds

