
Confidential

SMART CONTRACT AUDIT REPORT

for

MAKER FOUNDATION

Prepared By: Shuxiao Wang

Hangzhou, China
Oct 4, 2019

1/50 PeckShield Audit Report #: 2019-16

sxwang@peckshield.com

Confidential

Document Properties

Client Maker Foundation
Title Smart Contract Audit Report
Target Multi-Collateral Dai (MCD)
Version 1.0
Author Chiachih Wu, Xuxian Jiang
Auditors Chiachih Wu, Xuxian Jiang
Reviewed by Xuxian Jiang
Approved by Jeff Liu
Classification Confidential

Version Info

Version Date Author(s) Description
1.0 Oct 4, 2019 Chiachih Wu, Xuxian Jiang Final Release
0.4 Sep 09, 2019 Chiachih Wu, Xuxian Jiang More Findings Added
0.3 Sep 03, 2019 Chiachih Wu, Xuxian Jiang More Findings Added
0.2 Aug 23, 2019 Chiachih Wu, Xuxian Jiang Findings Added
0.1 Aug 21, 2019 Chiachih Wu Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/50 PeckShield Audit Report #: 2019-16

Confidential

Contents

1 Introduction 5
1.1 About Multi-Collateral Dai (MCD) . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 7

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Potential Denial-of-Service in Global Settlement . 12
3.2 Potential Divide-By-Zero in Spotter . 15
3.3 Inconsistent Time Type in Debt Engine . 16
3.4 approve()/transferFrom() Race Condition . 17
3.5 Unhandled Auction Corner Cases . 18
3.6 CDP Fork Restrictiveness . 20
3.7 Drip Efficiency Improvement . 21
3.8 Debt Auction Prevention . 23
3.9 Misadjusted CDP Cancellation . 24
3.10 Auction Kick-Off Authorization . 25
3.11 Auction Tick Validity . 28
3.12 Auction Deal Inconsistency . 29
3.13 Bloated Setter Interface . 31
3.14 Missed Deployment Dependency Checks . 32
3.15 Excessive Authorization in Deployment . 37
3.16 Collateral Check in MCD CDP Manager . 39
3.17 Other Suggestions . 41

4 Conclusion 42

3/50 PeckShield Audit Report #: 2019-16

Confidential

5 Appendix 43
5.1 Basic Coding Bugs . 43

5.1.1 Constructor Mismatch . 43
5.1.2 Ownership Takeover . 43
5.1.3 Redundant Fallback Function . 43
5.1.4 Overflows & Underflows . 43
5.1.5 Reentrancy . 44
5.1.6 Money-Giving Bug . 44
5.1.7 Blackhole . 44
5.1.8 Unauthorized Self-Destruct . 44
5.1.9 Revert DoS . 44
5.1.10 Unchecked External Call . 45
5.1.11 Gasless Send . 45
5.1.12 Send Instead Of Transfer . 45
5.1.13 Costly Loop . 45
5.1.14 (Unsafe) Use Of Untrusted Libraries . 45
5.1.15 (Unsafe) Use Of Predictable Variables . 46
5.1.16 Transaction Ordering Dependence . 46
5.1.17 Deprecated Uses . 46

5.2 Semantic Consistency Checks . 46
5.3 Additional Recommendations . 46

5.3.1 Avoid Use of Variadic Byte Array . 46
5.3.2 Use Fixed Compiler Version . 47
5.3.3 Make Visibility Level Explicit . 47
5.3.4 Make Type Inference Explicit . 47
5.3.5 Adhere To Function Declaration Strictly . 47

References 48

4/50 PeckShield Audit Report #: 2019-16

Confidential

1 | Introduction

Given the opportunity to review the Multi-Collateral Dai (MCD) design document and related
smart contract source code, we in the report outline our systematic method to evaluate potential
security issues in the smart contract implementation, expose possible semantic inconsistency between
smart contract code and the white paper, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved due
to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Multi-Collateral Dai (MCD)

Multi-Collateral Dai (MCD) is a modular system of inter-dependent smart contracts developed for
the Ethereum blockchain. An off-chain system of oracles is used to supply price data on which the
system relies. The core system of permissioned modules is maintained by MKR governance, with
updates being executed via approval voting. Non-permissioned front-ends such as the CDP Manager
and SCD-MCD Migrator provide convenience for CDP operators and Dai holders.

The basic information of Multi-Collateral Dai (MCD) is as follows:

Table 1.1: Basic Information of Multi-Collateral Dai (MCD)

Item Description
Issuer Maker Foundation

Website https://makerdao.com
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report Oct 4, 2019

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

5/50 PeckShield Audit Report #: 2019-16

Confidential

• https://github.com/makerdao/dss.git (526fa6a)

• https://github.com/makerdao/dss-deploy.git (ec9a414)

• https://github.com/makerdao/median.git (d95bbc1)

• https://github.com/makerdao/oracles-v2.git (a216cd0)

• https://github.com/makerdao/dss-cdp-manager.git (c11ec39)

• https://github.com/makerdao/scd-mcd-migration.git (4f7030c)

1.2 About PeckShield

PeckShield Inc. [28] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [23]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

6/50 PeckShield Audit Report #: 2019-16

https://github.com/makerdao/dss/tree/526fa6afb9ea771f846b895ae0aee361876f2bdb
https://github.com/makerdao/dss-deploy/tree/ec9a414ffab537a1c41a2d3c26ab0fe89cc82569
https://github.com/makerdao/median/tree/d95bbc1c3687160354f7156896017366652d6a73
https://github.com/makerdao/oracles-v2/tree/a216cd000b2fd5f2694176c8e86ea3c13faf2efe
https://github.com/makerdao/dss-cdp-manager/tree/c11ec39a6b89b743e4f719f8b4c2ddf44b038f98
https://github.com/makerdao/scd-mcd-migration/tree/4f7030c47478cbce9345376f58fa52bf11d99cce
https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [22], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some catogories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit cannot be considered comprehensive, we always recommend
proceeding with several independent audits and a public bug bounty program to ensure the security
of smart contract(s). Last but not least, this security audit should not be used as an investment
advice.

7/50 PeckShield Audit Report #: 2019-16

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

8/50 PeckShield Audit Report #: 2019-16

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used In This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/50 PeckShield Audit Report #: 2019-16

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing Multi-Collateral Dai (MCD) implementation.
During the first phase of our audit, we studied the MCD source code and ran our in-house static
code analyzer through the codebase, including areas such as ERC20 tokens, CDPs, Dai Saving
Rate (DSR), auctions, permissions, price oracle, and inter-contract actions. The purpose here is to
statically identify known coding bugs, and then manually verify (reject or confirm) issues reported
by our tool. We further manually review business logics, examine system operations, and place
DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 3

Informational 11

Total 16

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined that 16 issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/50 PeckShield Audit Report #: 2019-16

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved with the identified issues, including 1 high-severity vulnerability, 1 medium-severity vulner-
ability, 3 low-severity vulnerabilities and 11 informational recommendations, as shown in Table 2.1.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Informational Potential DoS in Global Settlement Business Logics Resolved
PVE-002 Informational Potential Divide-By-Zero in Spotter Numeric Errors Confirmed
PVE-003 Informational Inconsistent Time Type in Debt Engine Coding Practices Resolved
PVE-004 Low approve()/transferFrom() Race Condition Time and State Confirmed
PVE-005 Informational Unhandled Auction Corner Cases Business Logics Confirmed
PVE-006 Informational CDP Fork Restrictiveness Coding Practices Confirmed
PVE-007 Informational Drip Efficiency Improvement Coding Practices Confirmed
PVE-008 Informational Debt Auction Prevention Business Logics Resolved
PVE-009 Medium Misadjusted CDP Cancellation Behavioral Issues Resolved
PVE-010 High Auction Kick-Off Authorization Business Logics Resolved
PVE-011 Informational Auction Tick Validity Time and State Confirmed
PVE-012 Low Auction Deal Inconsistency Business Logics Resolved
PVE-013 Informational Bloated Setter Interface Coding Practices Resolved
PVE-014 Informational Missed Deployment Dependency Checks Coding Practices Confirmed
PVE-015 Low Excessive Authorization in Deployment Security Features Resolved
PVE-016 Informational Collateral Check in MCD CDP Manager Coding Practices Confirmed

Please refer to Section 3 for details.

11/50 PeckShield Audit Report #: 2019-16

Confidential

3 | Detailed Results

3.1 Potential Denial-of-Service in Global Settlement

• ID: PVE-001

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: src/end.sol

• Category: Business Logics [20]

• CWE subcategory: CWE-754 [14]

Description

The sixth step of ’End’, thaw(), is vulnerable to a potential denial-of-service attack when vat.dai(

address(vow))> 0. Specifically, throughout the five steps before thaw(), only the cage() step subtracts
vat.dai(address(vow)) by calling vow.cage() which calls vat.heal(). However, in the condition of
vat.dai(address(vow))> vat.sin(address(vow)), vat.dai(address(vow)) would be greater than 0 after
vow.cage(). This results in the termination of thaw() due to the vat.dai(address(vow))== 0 check.
Another easier way to exploit this vulnerability is simply calling vat.move() to add some dai balance
to vat.dai(address(vow)) right before thaw() is executed.

Specifically, while auditing the thaw() of end.sol, we find line 313 is vulnerable to a potential
denial-of-service attack when the attacker intentionally makes vow have some dai balance in vat.

310 f unc t i on thaw () ex te rna l note {
311 r equ i r e (l i v e == 0) ;
312 r equ i r e (debt == 0) ;
313 r equ i r e (va t . d a i (address (vow)) == 0) ;
314 r equ i r e (now >= add (when , wa i t)) ;
315 debt = vat . debt () ;
316 }

Listing 3.1: src/end.sol

In particular, if we examine the first five steps before thaw() in end.sol to find out where vat.dai

(address(vow)) is modified. In the first step, cage(), vow.cage() is invoked in line 259.

12/50 PeckShield Audit Report #: 2019-16

Confidential

253 f unc t i on cage () ex te rna l note auth {
254 r equ i r e (l i v e == 1) ;
255 l i v e = 0 ;
256 when = now ;
257 vat . cage () ;
258 ca t . cage () ;
259 vow . cage () ;
260 }

Listing 3.2: src/end.sol

Inside vow.cage(), vat.heal() is called with the smaller value between vat.dai(address(vow)) and
vat.sin(address(vow)) as the parameter (line 138).

132 f unc t i on cage () ex te rna l note auth {
133 l i v e = 0 ;
134 S in = 0 ;
135 Ash = 0 ;
136 f l a p p e r . cage (va t . d a i (address (f l a p p e r))) ;
137 f l o p p e r . cage () ;
138 vat . h e a l (min (va t . d a i (address (t h i s)) , va t . s i n (address (t h i s)))) ;
139 }

Listing 3.3: src/vow.sol

Here comes the interesting part. In vat.heal(), if vat.dai(address(vow))> vat.sin(address(vow)),
vat.dai(address(vow)) would be greater than 0 (line 241).

238 f unc t i on hea l (u in t rad) ex te rna l note {
239 address u = msg . sender ;
240 s i n [u] = sub (s i n [u] , rad) ;
241 da i [u] = sub (da i [u] , rad) ;
242 v i c e = sub (v i c e , rad) ;
243 debt = sub (debt , rad) ;
244 }

Listing 3.4: src/vat. sol

In the following steps, cage(ilk), skip(), skim(), free(), vat.dai(address(vow)) is NOT subtracted
but only added (e.g., skip() calls vat.suck()). As a result, the vat.dai(address(vow))> 0 condition
would not be changed until reaching thaw(), which leads to the termination of ’End’ process.

Alternatively, another easier way to exploit this vulnerability is calling vat.move(msg.sender, vow,

1) in the case of vat.dai[msg.sender] >= 1 before thaw() is triggered. Specifically, when the attacker
has vat.dai[msg.sender] >= 1, she can easily move 1 dai balance to vow in vat (line 146-147). The
only thing prevents this is the require(wish(src, msg.sender)) check in line 145.

144 f unc t i on move (address s r c , address dst , uint256 rad) ex te rna l note {
145 r equ i r e (wi sh (s r c , msg . sender)) ;
146 da i [s r c] = sub (da i [s r c] , rad) ;
147 da i [d s t] = add (da i [d s t] , rad) ;

13/50 PeckShield Audit Report #: 2019-16

Confidential

148 }

Listing 3.5: src/vat. sol

However, the check can be easily bypassed when src == msg.sender (i.e., the bit == usr case in
line 31).

30 f unc t i on wish (address b i t , address u s r) i n t e r n a l view re tu rn s (bool) {
31 re tu rn e i t h e r (b i t == usr , can [b i t] [u s r] == 1) ;
32 }

Listing 3.6: src/vat. sol

To sum up, either the system is in the condition of vat.dai(address(vow))> vat.sin(address(vow))

or the attacker intentionally calls vat.move(msg.sender, vow, 1) before thaw() is executed, the ’End’
process might not be as smooth as expected because of this issue.

Fortunately, such attack can be effectively alleviated by calling vow.heal() right before the thaw()

within the same transaction. In particular, the keeper responsible for the ’End’ process needs to
call vow.heal() right before the thaw() and needs to call it in the same transaction. This effectively
becomes an operation issue that should be kept in mind when initiating the ’End’ process. While we
consider the severity lowered to be informational, it is strongly recommended to add this issue into
related memos for proper ’End’ operations.

Recommendation Alleviate the issue by combining a vow.heal() call in the same transaction
as the thaw().

14/50 PeckShield Audit Report #: 2019-16

Confidential

3.2 Potential Divide-By-Zero in Spotter

• ID: PVE-002

• Severity: Informational

• Likelihood: Low

• Impact: None

• Target: src/spot.sol

• Category: Numeric Errors [21]

• CWE subcategory: CWE-369 [8]

Description

The poke() function in spot.sol does not validate par and ilks[ilk].mat before dividing something
by them respectively. Since the existence of file() functions for setting par and ilks[ilk].mat, this
could lead to divide by zero exceptions.

In particular, while auditing poke(), we notice that there are two rdiv operations in line 84.
However, neither of them check the divide by zero cases, leaving the EVM reverts without useful
information.

82 f unc t i on poke (bytes32 i l k) ex te rna l {
83 (bytes32 va l , bool zzz) = i l k s [i l k] . p i p . peek () ;
84 i f (zzz) {
85 uint256 spo t = r d i v (r d i v (mul (u in t (v a l) , 10 ∗∗ 9) , par) , i l k s [i l k] . mat) ;
86 vat . f i l e (i l k , "spot" , s po t) ;
87 emit Poke (i l k , va l , spo t) ;
88 }
89 }

Listing 3.7: src/spot. sol

Recommendation Alter the poke() function in Spotter to explicitly check the validity of rdiv
operands as follows:

82 f unc t i on poke (bytes32 i l k) ex te rna l {
83 (bytes32 va l , bool zzz) = i l k s [i l k] . p i p . peek () ;
84 i f (zzz) {
85 r equ i r e (par > 0 , "spot/invalid -par") ;
86 r equ i r e (i l k s [i l k . mat] > 0 , "spot/invalid -ilk") ;
87 uint256 spo t = r d i v (r d i v (mul (u in t (v a l) , 10 ∗∗ 9) , par) , i l k s [i l k] . mat) ;
88 vat . f i l e (i l k , "spot" , s po t) ;
89 emit Poke (i l k , va l , spo t) ;
90 }
91 }

Listing 3.8: Revised src/spot. sol

15/50 PeckShield Audit Report #: 2019-16

Confidential

3.3 Inconsistent Time Type in Debt Engine

• ID: PVE-003

• Severity: Informational

• Likelihood: Low

• Impact: None

• Target: src/vow.sol

• Category: Coding Practices [18]

• CWE subcategory: CWE-474 [10]

Description

In vow.sol, the uint256 variable, wait, is used to represent a specific time. However, other similar
variables such as ttl and tau are declared with the type uint48 in flop.sol.

The wait variable declared in vow.sol is an uint256 (line 57).

48 // --- Data ---
49 VatL ike pub l i c vat ;
50 F l appe r pub l i c f l a p p e r ;
51 F loppe r pub l i c f l o p p e r ;

53 mapping (uint256 => uint256) pub l i c s i n ; // debt queue
54 uint256 pub l i c S in ; // queued debt [rad]
55 uint256 pub l i c Ash ; // on -auction debt [rad]

57 uint256 pub l i c wa i t ; // flop delay [rad]
58 uint256 pub l i c sump ; // flop fixed lot size [rad]
59 uint256 pub l i c bump ; // flap fixed lot size [rad]
60 uint256 pub l i c hump ; // surplus buffer [rad]

Listing 3.9: src/vow.sol

As shown in line 100, wait is used to represent a specific time.

99 f unc t i on f l o g (u in t e r a) ex te rna l note {
100 r equ i r e (add (era , wa i t) <= now) ;
101 S in = sub (Sin , s i n [e r a]) ;
102 s i n [e r a] = 0 ;
103 }

Listing 3.10: src/vow.sol

However, in flop.sol, ttl and tau are declared as uint48 variables but also used to represent time
such as line 115.

112 f unc t i on t i c k (u in t i d) ex te rna l note {
113 r equ i r e (b i d s [i d] . end < now) ;
114 r equ i r e (b i d s [i d] . t i c == 0) ;
115 b i d s [i d] . end = add (uint48 (now) , tau) ;
116 }

Listing 3.11: src/flop . sol

16/50 PeckShield Audit Report #: 2019-16

Confidential

Recommendation Reflect wait with proper type casting such as line 87 in the following:

86 f unc t i on f i l e (bytes32 what , u in t data) ex te rna l note auth {
87 i f (what == "wait") wa i t = u in t (uint48 (data)) ;
88 i f (what == "bump") bump = data ;
89 i f (what == "sump") sump = data ;
90 i f (what == "hump") hump = data ;
91 }

Listing 3.12: Revised src/vow.sol

3.4 approve()/transferFrom() Race Condition

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: src/dai.sol

• Category: Time and State [17]

• CWE subcategory: CWE-362 [7]

Description

There is a known race condition issue regarding approve() / transferFrom() [3]. Specifically, when
a user intends to reduce the allowed spending amount previously approved from, say, 10 DAI to 1
DAI. The previously approved spender might race to transfer the amount you initially approved (the
10 DAI) and then additionally spend the new amount you just approved (1 DAI). This breaks the
user’s intention of restricting the spender to the new amount, not the sum of old amount and new
amount.

With the introduction of new approve()-style permit() and transferFrom()-style push()/pull()
/move(), it apparently raises the concern of possible race conditions. To alleviate such concern, it
is recommended to apply a known workaround (e.g., increaseApproval()/decreaseApproval()) and
further add necessary sanity checks when entering the approve() function.

98 f unc t i on approve (address usr , u in t wad) ex te rna l r e tu rn s (bool) {
99 a l l owance [msg . sender] [u s r] = wad ;

100 emit Approva l (msg . sender , us r , wad) ;
101 re tu rn t rue ;
102 }

Listing 3.13: src/dai . sol

Recommendation Add additional sanity checks in approve() and workaround functions increaseApproval
()/decreaseApproval().

98 f unc t i on approve (address usr , u in t wad) ex te rna l r e tu rn s (bool) {
99 r equ i r e (wad == 0 || a l l owance [msg . sender] [u s r] == 0) ;

17/50 PeckShield Audit Report #: 2019-16

Confidential

100 a l l owance [msg . sender] [u s r] = wad ;
101 emit Approva l (msg . sender , us r , wad) ;
102 re tu rn t rue ;
103 }
104 f unc t i on i n c r e a s eApp r o v a l (address usr , u in t wad) ex te rna l r e tu rn s (bool) {
105 a l l owance [msg . sender] [u s r] = add (a l l owance [msg . sender] [u s r] , (wad)) ;
106 emit Approva l (msg . sender , us r , a l l owance [msg . sender] [u s r]) ;
107 re tu rn t rue ;
108 }
109 f unc t i on de c r e a s eApp r o va l (address usr , u in t wad) ex te rna l r e tu rn s (bool) {
110 a l l owance [msg . sender] [u s r] = sub (a l l owance [msg . sender] [u s r] , (wad)) ;
111 emit Approva l (msg . sender , us r , a l l owance [msg . sender] [u s r]) ;
112 re tu rn t rue ;
113 }

Listing 3.14: Revised src/dai . sol

3.5 Unhandled Auction Corner Cases

• ID: PVE-005

• Severity: Informational

• Likelihood: Medium

• Impact: None

• Target: src/{flip, flop, flap}.sol

• Category: Business Logics [20]

• CWE subcategory: CWE-754 [14]

Description

The MCD introduces three types of auctions: flip, flop, and flap. The flip auction, known as the
collateral auction, is used to sell off collateral from risky CDP positions in exchange for borrowed
DAIs. The flop auction, known as the deficit auction, is used to cover underwater debt by selling
off a fixed amount (sump) of DAI deficit at a time, resulting in diluted MKR valuation. The flap

auction, known as the surplus auction, is used to auction off a fixed amount (bump) of DAI surplus
at a time, resulting in increased MKR valuation.

In the current implementation, these three types of auctions share certain timing-related corner
cases that have not be covered yet. Using the flip auction as an example, the auction has two
termination conditions: either when tau seconds (initially 2 days) have passed from the moment
the auction was initiated, or when ttl seconds (initially 3 hours) have passed from the moment the
last bid was placed. Once each termination condition is met, flip will not accept any more bids,
effectively considering the last bidder winning and allowing it to claim the auctioned collateral. Both
tau and ttl are risk parameters, initially set to be 2 days and 3 hours respectively, but reconfigurable
through governance (e.g., via the file interface).

18/50 PeckShield Audit Report #: 2019-16

Confidential

Note that flip does not cover two particular auction moments, either when bids[id].tic = now

or bids[id].end = now. The first moment refers to the exact moment when the last bid expires and
the second moment refers to the exact moment when the auction expires (e.g., reaching the allowed
time period). flip can be explicitly designed to either accept or deny any bids arrived in these two
particular moments. Current flip seems to implicitly deny such last-minute bids. With that, the
deal() should be allowed to claim the auctioned collateral starting from the very moment inclusively,
not exclusively (current case).

127 f unc t i on tend (u in t id , u in t l o t , u in t b id) ex te rna l note {
128 r equ i r e (b i d s [i d] . guy != address (0)) ;
129 r equ i r e (b i d s [i d] . t i c > now || b i d s [i d] . t i c == 0) ;
130 r equ i r e (b i d s [i d] . end > now) ;
131 . . .
132 }

Listing 3.15: src/ flip . sol ::tend()

144 f unc t i on dent (u in t id , u in t l o t , u in t b id) ex te rna l note {
145 r equ i r e (b i d s [i d] . guy != address (0)) ;
146 r equ i r e (b i d s [i d] . t i c > now || b i d s [i d] . t i c == 0) ;
147 r equ i r e (b i d s [i d] . end > now) ;
148 . . .
149 }

Listing 3.16: src/ flip . sol ::dent()

161 f unc t i on dea l (u in t i d) ex te rna l note {
162 r equ i r e (b i d s [i d] . t i c != 0 && (b i d s [i d] . t i c < now || b i d s [i d] . end < now)) ;
163 . . .
164 }

Listing 3.17: src/ flip . sol ::deal ()

Recommendation Cover these corner cases by either allowing last-minute bids on these par-
ticular moments in flip.tend(), flip.dent(), flop.dent(), and flap.tend() or allowing the immediate
deal settlement in flip.deal(), flop.deal(), and flap.deal(). The latter requires minimal coding
changes and has small tangible implication, and thus is strongly preferred. The required changes are
shown in the following. Note this applies to flip.deal(), flop.deal(), and flap.deal().

161 f unc t i on dea l (u in t i d) ex te rna l note {
162 r equ i r e (b i d s [i d] . t i c != 0 && (b i d s [i d] . t i c <= now || b i d s [i d] . end <= now)) ;
163 . . .
164 }

Listing 3.18: Revised src/ flip . sol ::deal ()

19/50 PeckShield Audit Report #: 2019-16

Confidential

3.6 CDP Fork Restrictiveness

• ID: PVE-006

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: src/vat.sol

• Category: Coding Practices [18]

• CWE subcategory: CWE-474 [10]

Description

vat supports CDP fungibility (via fork()) by allowing the movement of related collateral and debt
between two CDPs. The movement is granted on the condition that both src and dst consent the
initiator, i.e., msg.sender. This condition can be relaxed such that either the affected CDP becomes
more safe, or the owner consents. The relaxed condition shares the same spirit with the sanity
check conditions (i.e., require(either(both(dart <= 0, dink >= 0), wish(u, msg.sender)))) applied
in CDP-manipulating frob() in line 181.

197 f unc t i on f o r k (bytes32 i l k , address s r c , address dst , i n t dink , i n t da r t) ex te rna l
note {

198 Urn storage u = urns [i l k] [s r c] ;
199 Urn storage v = urns [i l k] [d s t] ;
200 I l k storage i = i l k s [i l k] ;

202 u . i n k = sub (u . ink , d ink) ;
203 u . a r t = sub (u . a r t , d a r t) ;
204 v . i n k = add (v . ink , d ink) ;
205 v . a r t = add (v . a r t , d a r t) ;

207 u in t utab = mul (u . a r t , i . r a t e) ;
208 u in t vtab = mul (v . a r t , i . r a t e) ;

210 // both sides consent
211 r equ i r e (wi sh (s r c , msg . sender) && wish (dst , msg . sender)) ;

213 // both sides safe
214 r equ i r e (utab <= mul (u . ink , i . s po t)) ;
215 r equ i r e (vtab <= mul (v . ink , i . s po t)) ;

217 // both sides non -dusty
218 r equ i r e (utab >= i . dus t || u . a r t == 0) ;
219 r equ i r e (vtab >= i . dus t || v . a r t == 0) ;
220 }

Listing 3.19: src/vat. sol

Recommendation Relax the restrictive src-and-dst-consenting condition to either the affected
CDP becomes more safe or the owner consents (in fork()).

20/50 PeckShield Audit Report #: 2019-16

Confidential

197 f unc t i on f o r k (bytes32 i l k , address s r c , address dst , i n t dink , i n t da r t) ex te rna l
note {

198 Urn storage u = urns [i l k] [s r c] ;
199 Urn storage v = urns [i l k] [d s t] ;
200 I l k storage i = i l k s [i l k] ;

202 u . i n k = sub (u . ink , d ink) ;
203 u . a r t = sub (u . a r t , d a r t) ;
204 v . i n k = add (v . ink , d ink) ;
205 v . a r t = add (v . a r t , d a r t) ;

207 u in t utab = mul (u . a r t , i . r a t e) ;
208 u in t vtab = mul (v . a r t , i . r a t e) ;

210 // src urn is either more safe , or src owner consents
211 r equ i r e (e i t h e r (both (da r t <= 0 , d ink >= 0) , wi sh (s r c , msg . sender))) ;
212 // dst urn is either more safe , or dst owner consents
213 r equ i r e (e i t h e r (both (da r t >= 0 , d ink <= 0) , wi sh (dst , msg . sender))) ;

215 // both sides safe
216 r equ i r e (utab <= mul (u . ink , i . s po t)) ;
217 r equ i r e (vtab <= mul (v . ink , i . s po t)) ;

219 // both sides non -dusty
220 r equ i r e (utab >= i . dus t || u . a r t == 0) ;
221 r equ i r e (vtab >= i . dus t || v . a r t == 0) ;
222 }

Listing 3.20: Revised src/vat. sol

3.7 Drip Efficiency Improvement

• ID: PVE-007

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: src/{jug.sol, pot.sol}

• Category: Coding Practices [18]

• CWE subcategory: CWE-1164 [5]

Description

Both jug and pot contracts implement the drip() op to collect either stability fees or saving interests.
Note that the operation records the last collection time in rho. And the operation will proceed when
require(now >= ilks[ilk].rho) (in jug.drip()) or require(now >= rho) (in pot.drip()). The drip()

can be further improved by changing the require() to if condition: if (ilks[ilk].rho >= now) return

; (in jug.drip()) or if (rho >= now) return; (in pot.drip()).

21/50 PeckShield Audit Report #: 2019-16

Confidential

One benefit is to avoid unnecessary friction potentially caused by require() (that might revert
ongoing transaction). The second benefit is the improved gas efficiency by avoiding unnecessary
computations and inter-contract calls.

95 // --- Stability Fee Collection ---
96 f unc t i on d r i p (bytes32 i l k) ex te rna l note {
97 r equ i r e (now >= i l k s [i l k] . rho) ;
98 VatL ike . I l k memory i = vat . i l k s (i l k) ;
99 vat . f o l d (i l k , vow , d i f f (rmul (rpow (add (base , i l k s [i l k] . duty) , now − i l k s [i l k] . rho

, ONE) , i . r a t e) , i . r a t e)) ;
100 i l k s [i l k] . rho = now ;
101 }

Listing 3.21: src/jug. sol

124 // --- Savings Rate Accumulation ---
125 f unc t i on d r i p () ex te rna l note {
126 r equ i r e (now >= rho) ;
127 u in t chi_ = sub (rmul (rpow (dsr , now − rho , ONE) , c h i) , c h i) ;
128 c h i = add (ch i , chi_) ;
129 rho = now ;
130 vat . suck (address (vow) , address (t h i s) , mul (Pie , chi_)) ;
131 }

Listing 3.22: src/pot. sol

Recommendation Improve the drip() efficiency by removing the = in the required condition.
Moreover, replace require accordingly with if to avoid introducing unnecessary frictions.

95 // --- Stability Fee Collection ---
96 f unc t i on d r i p (bytes32 i l k) ex te rna l note {
97 i f (i l k s [i l k] . rho >= now) re tu rn ;
98 VatL ike . I l k memory i = vat . i l k s (i l k) ;
99 vat . f o l d (i l k , vow , d i f f (rmul (rpow (add (base , i l k s [i l k] . duty) , now − i l k s [i l k] . rho

, ONE) , i . r a t e) , i . r a t e)) ;
100 i l k s [i l k] . rho = now ;
101 }

Listing 3.23: Revised src/jug. sol

124 // --- Savings Rate Accumulation ---
125 f unc t i on d r i p () ex te rna l note {
126 i f (rho >= now) re tu rn ;
127 u in t chi_ = sub (rmul (rpow (dsr , now − rho , ONE) , c h i) , c h i) ;
128 c h i = add (ch i , chi_) ;
129 rho = now ;
130 vat . suck (address (vow) , address (t h i s) , mul (Pie , chi_)) ;
131 }

Listing 3.24: Revised src/pot. sol

22/50 PeckShield Audit Report #: 2019-16

Confidential

3.8 Debt Auction Prevention

• ID: PVE-008

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: src/vow.sol

• Category: Business Logics [20]

• CWE subcategory: CWE-754 [14]

Description

The debt engine, vow, is vulnerable to a potential denial-of-service attack when vat.dai(address(vow)

) > 0. This is a similar issue with PVE-001, but in a much more realistic context. Specifically, flop()
is the function that kicks off a debt deficit auction. However, the kick-off requires vat.dai(address(

this)) = 0 where this is vow itself. Similar to PVE-001, if someone attempts to deposit some tiny
dai amount to make vat.dai(address(vow)) > 0, which effectively prevents the debt auction from
proceeding.

Fortunately, such issue can be effectively alleviated by calling vow.heal() right before the flop()

within the same transaction, hence the severity is similarly lowered to informational. However, it is
strongly recommended to add this issue into related memos for proper auction flop() operations.

118 // Debt auction
119 f unc t i on f l o p () ex te rna l note r e tu rn s (u in t i d) {
120 r equ i r e (sump <= sub (sub (va t . s i n (address (t h i s)) , S in) , Ash)) ;
121 r equ i r e (va t . d a i (address (t h i s)) == 0) ;
122 Ash = add (Ash , sump) ;
123 i d = f l o p p e r . k i c k (address (t h i s) , u in t (−1) , sump) ;
124 }

Listing 3.25: src/vow.sol

Recommendation Alleviate the issue by combining with a vow.heal() call in the same trans-
action as the flop().

23/50 PeckShield Audit Report #: 2019-16

Confidential

3.9 Misadjusted CDP Cancellation

• ID: PVE-009

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: src/end.sol

• Category: Behavioral Issues [19]

• CWE subcategory: CWE-440 [9]

Description

The fourth step of ’End’, skim(), is designed to cancel current CDPs. It basically grab()s away
current CDP debt with the goal of converting all art to sin. Note the owed debt is calculated and
saved in the local owe variable, i.e., owe = rmul(rmul(u.art, i.rate), tag[ilk]) (line 294 in end.sol).
However, it misses the par factor, the reference price feed per dai, leading to debt misadjustment in
CDP Cancellation.

289 f unc t i on skim (bytes32 i l k , address urn) ex te rna l note {
290 r equ i r e (tag [i l k] != 0) ;
291 VatL ike . I l k memory i = vat . i l k s (i l k) ;
292 VatL ike . Urn memory u = vat . u rn s (i l k , urn) ;

294 u in t owe = rmul (rmul (u . a r t , i . r a t e) , tag [i l k]) ;
295 u in t wad = min (u . ink , owe) ;
296 gap [i l k] = add (gap [i l k] , sub (owe , wad)) ;

298 r equ i r e (wad <= 2∗∗255 && u . a r t <= 2∗∗255) ;
299 vat . grab (i l k , urn , address (t h i s) , address (vow) , − i n t (wad) , − i n t (u . a r t)) ;
300 }

Listing 3.26: src/end.sol

Recommendation Reconsider the associated , i.e., par, in the calculation of owed debt when
canceling CDPs.

24/50 PeckShield Audit Report #: 2019-16

Confidential

3.10 Auction Kick-Off Authorization

• ID: PVE-010

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: src/{flip, flap}.sol

• Category: Business Logics [20]

• CWE subcategory: CWE-862 [15]

Description

As mentioned in Section 3.5, MCD has three types of auctions: flip, flop, and flap. The flip

auction, known as the collateral auction, is used to sell off collateral from risky CDP positions in
exchange for borrowed DAIs. The kick-off is initiated when a keeper calls cat.bite(). The flop

auction, known as the deficit auction, is used to cover underwater debt by selling off a fixed amount
(sump) of DAI deficit at a time, resulting in diluted MKR valuation. The kick-off is initiated when
a keeper calls vow.flop(). The flap auction, known as the surplus auction, is used to auction off a
fixed amount (bump) of DAI surplus at a time, resulting in increased MKR valuation. The kick-off
should be initiated when a keeper calls vow.flap().

We emphasize that the kick-offs of these three auctions should only be initiated from cat.bite(),
vow.flop(), and vow.flap() respectively. In other words, there is a need to add necessary authorization
to ensure that related kick()s are only called from these trusted contracts. Note that the current
code base only has the required authorization in place for flop.kick(), but not flip.kick() and flap

.kick(). If there is no such authorization, it is possible to inject crafted auctions that will be later
finalized in deal to cause asset loss or manipulation.

To elaborate, the crafted auctions via flap.kick() injection, once finalized in flap.deal(), could
lead to gem.burn(address(this), bids[id].bid) -- line 135 in flap.sol where the burned amount
bids[id].bid is directly controlled by the attacker. Note this attack might be readily launched
without much cost (basically transaction gas fee) and could seriously affect MKR valuation and even
the stability of entire DAI surplus auction subsystem.

Specifically, an attacker could simply kick off (via flap.kick()) a honeypot auction (e.g., initialized
with an extremely high 1,000MRK bid for a very low 0.01DAI lot). This honeypot auction will not likely
attract any external bidders (including bots) as it does not appear to be profitable. Until the auction
expires, say, 2 days later, the attacker could simply call flap.deal() to finalize the auction. Due to the
issue identified in PVE-013 (Section 3.12), the honeypot auction will be successfully closed, but the
closed deal() will cause the auction subsystem to burn (via gem.burn()) the amount of MKR specified
in the honeypot auction (as far as it is less than the amount held by the flap auction subsystem at
the moment when deal() is being closed). The burnt MKR amount leads to a direct loss of flap

auction subsystem and could cascading impact other ongoing surplus auctions. We consider this a

25/50 PeckShield Audit Report #: 2019-16

Confidential

high-severity issue since the difficulty of launching this attack is very low, but the impact of causing
MKR loss and disrupting normal surplus auctions is quite serious!

For the crafted auctions via flip.kick() injection, it may not immediately lead to materialized
cost as the flip.deal() simply ”returns” back the collateralized asset. But if such auction is injected
right before ’End’, such auction will be trusted by ’End’ and the claimed bids[id].bid (controlled by
injector) will be ”credited”, effectively stealing assets through ’End’.

During our investigation, we also notice that both flip and flop auctions have the tickmechanism
that can be used to re-start (or extend) the auction if there is no bid received yet. If tick is designed
to be callable by any entity (likely the first bidder), there is no need to add authorization. However,
if it is intended for specific auction entity, there is a need to add similar authorization. It is our
understanding that the former is the case, i.e., tick is designed to be callable by any entity.

103 // --- Auction ---
104 f unc t i on k i c k (address usr , address ga l , u in t tab , u in t l o t , u in t b id)
105 pub l i c r e tu rn s (u in t i d)
106 {
107 r equ i r e (k i c k s < u in t (−1)) ;
108 i d = ++k i c k s ;

110 b i d s [i d] . b i d = b id ;
111 b i d s [i d] . l o t = l o t ;
112 b i d s [i d] . guy = msg . sender ; // configurable ??
113 b i d s [i d] . end = add (uint48 (now) , tau) ;
114 b i d s [i d] . u s r = u s r ;
115 b i d s [i d] . g a l = ga l ;
116 b i d s [i d] . tab = tab ;

118 vat . f l u x (i l k , msg . sender , address (t h i s) , l o t) ;

120 emit Kick (id , l o t , b id , tab , usr , g a l) ;
121 }
122 f unc t i on t i c k (u in t i d) ex te rna l note {
123 r equ i r e (b i d s [i d] . end < now) ;
124 r equ i r e (b i d s [i d] . t i c == 0) ;
125 b i d s [i d] . end = add (uint48 (now) , tau) ;
126 }

Listing 3.27: src/ flip . sol

99 // --- Auction ---
100 f unc t i on k i c k (address ga l , u in t l o t , u in t b id) ex te rna l auth r e tu rn s (u in t i d) {
101 r equ i r e (l i v e == 1) ;
102 r equ i r e (k i c k s < u in t (−1)) ;
103 i d = ++k i c k s ;

105 b i d s [i d] . b i d = b id ;
106 b i d s [i d] . l o t = l o t ;
107 b i d s [i d] . guy = ga l ;
108 b i d s [i d] . end = add (uint48 (now) , tau) ;

26/50 PeckShield Audit Report #: 2019-16

Confidential

110 emit Kick (id , l o t , b id , g a l) ;
111 }
112 f unc t i on t i c k (u in t i d) ex te rna l note {
113 r equ i r e (b i d s [i d] . end < now) ;
114 r equ i r e (b i d s [i d] . t i c == 0) ;
115 b i d s [i d] . end = add (uint48 (now) , tau) ;
116 }

Listing 3.28: src/flop . sol

98 // --- Auction ---
99 f unc t i on k i c k (u in t l o t , u in t b id) ex te rna l r e tu rn s (u in t i d) {

100 r equ i r e (l i v e == 1) ;
101 r equ i r e (k i c k s < u in t (−1)) ;
102 i d = ++k i c k s ;

104 b i d s [i d] . b i d = b id ;
105 b i d s [i d] . l o t = l o t ;
106 b i d s [i d] . guy = msg . sender ; // configurable ??
107 b i d s [i d] . end = add (uint48 (now) , tau) ;

109 vat . move (msg . sender , address (t h i s) , l o t) ;

111 emit Kick (id , l o t , b i d) ;
112 }

Listing 3.29: src/flap . sol

Recommendation Add necessary authorization to ensure auctions are kick()’ed-off from trusted
contracts, i.e., cat and vow respectively.

103 // --- Auction ---
104 f unc t i on k i c k (address usr , address ga l , u in t tab , u in t l o t , u in t b id)
105 pub l i c auth r e tu rn s (u in t i d)
106 {
107 r equ i r e (k i c k s < u in t (−1)) ;
108 i d = ++k i c k s ;

110 b i d s [i d] . b i d = b id ;
111 b i d s [i d] . l o t = l o t ;
112 b i d s [i d] . guy = msg . sender ; // configurable ??
113 b i d s [i d] . end = add (uint48 (now) , tau) ;
114 b i d s [i d] . u s r = u s r ;
115 b i d s [i d] . g a l = ga l ;
116 b i d s [i d] . tab = tab ;

118 vat . f l u x (i l k , msg . sender , address (t h i s) , l o t) ;

120 emit Kick (id , l o t , b id , tab , usr , g a l) ;
121 }

Listing 3.30: Revised src/ flip . sol

27/50 PeckShield Audit Report #: 2019-16

Confidential

98 // --- Auction ---
99 f unc t i on k i c k (u in t l o t , u in t b id) ex te rna l auth r e tu rn s (u in t i d) {

100 r equ i r e (l i v e == 1) ;
101 r equ i r e (k i c k s < u in t (−1)) ;
102 i d = ++k i c k s ;

104 b i d s [i d] . b i d = b id ;
105 b i d s [i d] . l o t = l o t ;
106 b i d s [i d] . guy = msg . sender ; // configurable ??
107 b i d s [i d] . end = add (uint48 (now) , tau) ;

109 vat . move (msg . sender , address (t h i s) , l o t) ;

111 emit Kick (id , l o t , b i d) ;
112 }

Listing 3.31: Revised src/flap . sol

3.11 Auction Tick Validity

• ID: PVE-011

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: src/{flip, flop}.sol

• Category: Time and State [17]

• CWE subcategory: CVE-668 [13]

Description

As mentioned in PVE-011 (Section 3.10), both flip and flop auctions have the tick mechanism that
can be used to re-start (or extend) the auction if there is no bid received yet. And tick is designed
to be callable by any entity and thus does not require auth protection.

However, current tick mechanism does not validate whether the given auction ID exists yet and,
once called, will simply set the given auction’s total auction time. Note the given auction must not
receive any bids yet, and the current implementation allows those upcoming, but not present yet,
auctions as well.

122 f unc t i on t i c k (u in t i d) ex te rna l note {
123 r equ i r e (b i d s [i d] . end < now) ;
124 r equ i r e (b i d s [i d] . t i c == 0) ;
125 b i d s [i d] . end = add (uint48 (now) , tau) ;
126 }

Listing 3.32: src/ flip . sol

Specifically, if we take a look at the tick implementation in flip.sol, current sanity checks verify
the require(bids[id].end < now) and require(bids[id].tic == 0). Both succeed as for a non-present

28/50 PeckShield Audit Report #: 2019-16

Confidential

auction, the end field and the tic field hold the default 0. Therefore, the non-present auction’s end
time is now pre-set. Fortunately, when the upcoming auction is kicked-off, kick will reset the auction
end time, neutralizing previous effect.

Our assessment indicates this might not be an intended behavior, and though no harmful impact
or exploitation have been identified yet, it is still recommended to add necessary validity check inside
tick() function.

Recommendation Validate the auction ID when entering tick(). This applies to flip.tick()

and flop.tick()

122 f unc t i on t i c k (u in t i d) ex te rna l note {
123 r equ i r e (b i d s [i d] . guy != address (0)) ;
124 r equ i r e (b i d s [i d] . end < now) ;
125 r equ i r e (b i d s [i d] . t i c == 0) ;
126 b i d s [i d] . end = add (uint48 (now) , tau) ;
127 }

Listing 3.33: Revised src/ flip . sol

112 f unc t i on t i c k (u in t i d) ex te rna l note {
113 r equ i r e (b i d s [i d] . guy != address (0)) ;
114 r equ i r e (b i d s [i d] . end < now) ;
115 r equ i r e (b i d s [i d] . t i c == 0) ;
116 b i d s [i d] . end = add (uint48 (now) , tau) ;
117 }

Listing 3.34: Revised src/flop . sol

3.12 Auction Deal Inconsistency

• ID: PVE-012

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: src/{flop, flap}.sol

• Category: Business Logics [20]

• CWE subcategory: CWE-754 [14]

Description

To finalize an auction, the deal mechanism is implemented in flip, flap, and flop. However, in
flip.deal(), the sanity checks are subtly inconsistent with those in flap.deal() and flop.deal().

161 f unc t i on dea l (u in t i d) ex te rna l note {
162 r equ i r e (b i d s [i d] . t i c != 0 && (b i d s [i d] . t i c < now || b i d s [i d] . end < now)) ;
163 vat . f l u x (i l k , address (t h i s) , b i d s [i d] . guy , b i d s [i d] . l o t) ;
164 de le te b i d s [i d] ;

29/50 PeckShield Audit Report #: 2019-16

Confidential

165 }

Listing 3.35: src/ flip . sol

In particular, in flip.deal():162, bids[id].tic != 0 is a necessary condition to enter flip.deal().
Then, either bids[id].tic < now or bids[id].end < now can pass the sanity checks.

130 f unc t i on dea l (u in t i d) ex te rna l note {
131 r equ i r e (l i v e == 1) ;
132 r equ i r e (b i d s [i d] . t i c < now && b i d s [i d] . t i c != 0 ||
133 b i d s [i d] . end < now) ;
134 vat . move (address (t h i s) , b i d s [i d] . guy , b i d s [i d] . l o t) ;
135 gem . burn (address (t h i s) , b i d s [i d] . b i d) ;
136 de le te b i d s [i d] ;
137 }

Listing 3.36: src/flap . sol

133 f unc t i on dea l (u in t i d) ex te rna l note {
134 r equ i r e (l i v e == 1) ;
135 r equ i r e (b i d s [i d] . t i c < now && b i d s [i d] . t i c != 0 ||
136 b i d s [i d] . end < now) ;
137 gem . mint (b i d s [i d] . guy , b i d s [i d] . l o t) ;
138 de le te b i d s [i d] ;
139 }

Listing 3.37: src/flop . sol

However, in flap.deal():132-133 and flop.deal():135-136, the sanity checks allows any bids[id]

with bids[id].end < now to pass the checks, which is inconsistent with the implementation of flip.
deal(). As discussed in Section 3.10, such inconsistency can be exploited together with PVE-011 to
cause damages to the surplus auction subsystem.

Furthermore, an attacker can use a non-present id to trigger flap.deal() and flop.deal() due
to the fact that bids[id].end < now is always true for non-present id (i.e., bids[id].end is 0). This
also has the noisy side-effect of generating non-meaningful events (e.g., Transfer events generated
by gem.burn() with zero amount).

Recommendation Make the sanity checks of flap.deal() and flop.deal() consistent with
flip.deal() as follows:

130 f unc t i on dea l (u in t i d) ex te rna l note {
131 r equ i r e (l i v e == 1) ;
132 r equ i r e (b i d s [i d] . t i c != 0 && (b i d s [i d] . t i c < now || b i d s [i d] . end < now)) ;
133 vat . move (address (t h i s) , b i d s [i d] . guy , b i d s [i d] . l o t) ;
134 gem . burn (address (t h i s) , b i d s [i d] . b i d) ;
135 de le te b i d s [i d] ;
136 }

Listing 3.38: Revised src/flap . sol

30/50 PeckShield Audit Report #: 2019-16

Confidential

133 f unc t i on dea l (u in t i d) ex te rna l note {
134 r equ i r e (l i v e == 1) ;
135 r equ i r e (b i d s [i d] . t i c != 0 && (b i d s [i d] . t i c < now || b i d s [i d] . end < now)) ;
136 gem . mint (b i d s [i d] . guy , b i d s [i d] . l o t) ;
137 de le te b i d s [i d] ;
138 }

Listing 3.39: Revised src/flop . sol

3.13 Bloated Setter Interface

• ID: PVE-013

• Severity: Informational

• Likelihood: Medium

• Impact: None

• Target: dss-deploy/src/govActions.sol

• Category: Coding Practices [18]

• CWE subcategory: CWE-561 [11]

Description

The Setter interface defines a common way to set up various risk parameters agreed upon through
governance. Currently, there are 7 variants of file ops defined in Setter. However, among the
7 variants, the following 3 are not used in MCD: function file(address) public, function file(

uint) public, and function file(bytes32, bytes32) public. These unused interfaces unnecessarily
complicate the abstraction and understanding, and therefore are suggested for removal.

3 cont ract S e t t e r {
4 f unc t i on f i l e (address) pub l i c ;
5 f unc t i on f i l e (u in t) pub l i c ;
6 f unc t i on f i l e (bytes32 , address) pub l i c ;
7 f unc t i on f i l e (bytes32 , u in t) pub l i c ;
8 f unc t i on f i l e (bytes32 , bytes32) pub l i c ;
9 f unc t i on f i l e (bytes32 , bytes32 , u in t) pub l i c ;

10 f unc t i on f i l e (bytes32 , bytes32 , address) pub l i c ;
11 f unc t i on r e l y (address) pub l i c ;
12 f unc t i on deny (address) pub l i c ;
13 f unc t i on i n i t (bytes32) pub l i c ;
14 }

Listing 3.40: dss−deploy/src/govActions. sol

Accordingly, on top of the Setter.file() interface, GovActions defines 7 related file high-level
abstraction ops. And 3 of them are similarly unused in this MCD.

26 cont ract GovAct ions {
27 f unc t i on f i l e (address who , address data) pub l i c {
28 S e t t e r (who) . f i l e (data) ;
29 }

31/50 PeckShield Audit Report #: 2019-16

Confidential

31 f unc t i on f i l e (address who , u in t data) pub l i c {
32 S e t t e r (who) . f i l e (data) ;
33 }

35 f unc t i on f i l e (address who , bytes32 what , address data) pub l i c {
36 S e t t e r (who) . f i l e (what , data) ;
37 }

39 f unc t i on f i l e (address who , bytes32 what , u in t data) pub l i c {
40 S e t t e r (who) . f i l e (what , data) ;
41 }

43 f unc t i on f i l e (address who , bytes32 what , bytes32 data) pub l i c {
44 S e t t e r (who) . f i l e (what , data) ;
45 }

47 f unc t i on f i l e (address who , bytes32 i l k , bytes32 what , u in t data) pub l i c {
48 S e t t e r (who) . f i l e (i l k , what , data) ;
49 }

51 f unc t i on f i l e (address who , bytes32 i l k , bytes32 what , address data) pub l i c {
52 S e t t e r (who) . f i l e (i l k , what , data) ;
53 }
54 . . .
55 }

Listing 3.41: dss−deploy/src/govActions. sol

Recommendation Assuming Setter and govActions are designed only for MCD, we suggest
the previously-mentioned unused 3 file interfaces in both Setter and govActions can be removed.

3.14 Missed Deployment Dependency Checks

• ID: PVE-014

• Severity: Informational

• Likelihood: Low

• Impact: None

• Target: dss-deploy/src/DssDeploy.sol

• Category: Coding Practices [18]

• CWE subcategory: CWE-1120 [4]

Description

During the deployment of various MCD modules, there are multiple required dependency checks to
ensure that those modules used in this deployment are ready for use. However, we identified a few
occasions where some of these dependency checks are missing:

252 f unc t i on d e p l o y L i q u i d a t o r () pub l i c auth {

32/50 PeckShield Audit Report #: 2019-16

Confidential

253 r equ i r e (address (vow) != address (0) , "Missing previous step") ;

255 // Deploy
256 ca t = catFab . newCat (address (va t)) ;

258 // Internal references set up
259 ca t . f i l e ("vow" , address (vow)) ;

261 // Internal auth
262 vat . r e l y (address (ca t)) ;
263 vow . r e l y (address (ca t)) ;
264 }

Listing 3.42: src/DssDeploy.sol

In deployLiquidator(), vat is used in line 256 to deploy cat but the dependency check for address
(vat) is missing.

266 f unc t i on deployShutdown (address gov , address p i t , uint256 min) pub l i c auth {
267 r equ i r e (address (ca t) != address (0) , "Missing previous step") ;

269 // Deploy
270 end = endFab . newEnd () ;

272 // Internal references set up
273 end . f i l e ("vat" , address (va t)) ;
274 end . f i l e ("cat" , address (ca t)) ;
275 end . f i l e ("vow" , address (vow)) ;
276 end . f i l e ("pot" , address (pot)) ;
277 end . f i l e ("spot" , address (s p o t t e r)) ;

279 // Internal auth
280 vat . r e l y (address (end)) ;
281 ca t . r e l y (address (end)) ;
282 vow . r e l y (address (end)) ;
283 pot . r e l y (address (end)) ;

285 // Deploy ESM
286 esm = new ESM(gov , address (end) , address (p i t) , min) ;
287 end . r e l y (address (esm)) ;
288 }

Listing 3.43: src/DssDeploy.sol

In deployShutdown(), vat, vow, pot, and spotter, are used in line 273-277, but the dependency
checks for them are missing as well.

290 f unc t i on dep loyPause (u in t de lay , DSAuthor i ty a u t h o r i t y) pub l i c auth {
291 r equ i r e (address (d a i) != address (0) , "Missing previous step") ;
292 r equ i r e (address (end) != address (0) , "Missing previous step") ;

294 pause = pauseFab . newPause (de lay , address (0) , a u t h o r i t y) ;

33/50 PeckShield Audit Report #: 2019-16

Confidential

296 vat . r e l y (address (pause . p roxy ())) ;
297 ca t . r e l y (address (pause . p roxy ())) ;
298 vow . r e l y (address (pause . p roxy ())) ;
299 j ug . r e l y (address (pause . p roxy ())) ;
300 pot . r e l y (address (pause . p roxy ())) ;
301 s p o t t e r . r e l y (address (pause . p roxy ())) ;
302 f l a p . r e l y (address (pause . p roxy ())) ;
303 f l o p . r e l y (address (pause . p roxy ())) ;
304 end . r e l y (address (pause . p roxy ())) ;

306 t h i s . s e t A u t h o r i t y (a u t h o r i t y) ;
307 t h i s . setOwner (address (0)) ;
308 }

Listing 3.44: src/DssDeploy.sol

In deployPause(), vat, cat, vow, jug, pot, spotter, flap, flop are used in line 296-303, but not
checked for their presences at the beginning of the function.

310 f unc t i on d e p l o y C o l l a t e r a l (bytes32 i l k , address adapte r , address p ip) pub l i c auth {
311 r equ i r e (i l k != bytes32 ("") , "Missing ilk name") ;
312 r equ i r e (adap t e r != address (0) , "Missing adapter address") ;
313 r equ i r e (p i p != address (0) , "Missing PIP address") ;
314 r equ i r e (address (pause) != address (0) , "Missing previous step") ;

316 // Deploy
317 i l k s [i l k] . f l i p = f l i p F a b . newF l ip (address (va t) , i l k) ;
318 i l k s [i l k] . adap t e r = adap t e r ;
319 Spo t t e r (s p o t t e r) . f i l e (i l k , address (p i p)) ; // Set pip

321 // Internal references set up
322 ca t . f i l e (i l k , "flip" , address (i l k s [i l k] . f l i p)) ;
323 vat . i n i t (i l k) ;
324 j ug . i n i t (i l k) ;

326 // Internal auth
327 vat . r e l y (adap t e r) ;
328 i l k s [i l k] . f l i p . r e l y (address (end)) ;
329 i l k s [i l k] . f l i p . r e l y (address (pause . p roxy ())) ;
330 }

Listing 3.45: src/DssDeploy.sol

In deployCollateral(), cat, vat, jug are used in line 322-324, but not checked before the usage.

Recommendation Add necessary dependency checks as follows:

252 f unc t i on d e p l o y L i q u i d a t o r () pub l i c auth {
253 r equ i r e (address (va t) != address (0) , "Missing previous step") ;
254 r equ i r e (address (vow) != address (0) , "Missing previous step") ;

256 // Deploy
257 ca t = catFab . newCat (address (va t)) ;

34/50 PeckShield Audit Report #: 2019-16

Confidential

259 // Internal references set up
260 ca t . f i l e ("vow" , address (vow)) ;

262 // Internal auth
263 vat . r e l y (address (ca t)) ;
264 vow . r e l y (address (ca t)) ;
265 }

Listing 3.46: Revised deployLiquidator ()

266 f unc t i on deployShutdown (address gov , address p i t , uint256 min) pub l i c auth {
267 r equ i r e (address (va t) != address (0) , "Missing previous step") ;
268 r equ i r e (address (ca t) != address (0) , "Missing previous step") ;
269 r equ i r e (address (vow) != address (0) , "Missing previous step") ;
270 r equ i r e (address (pot) != address (0) , "Missing previous step") ;
271 r equ i r e (address (s p o t t e r) != address (0) , "Missing previous step") ;

273 // Deploy
274 end = endFab . newEnd () ;

276 // Internal references set up
277 end . f i l e ("vat" , address (va t)) ;
278 end . f i l e ("cat" , address (ca t)) ;
279 end . f i l e ("vow" , address (vow)) ;
280 end . f i l e ("pot" , address (pot)) ;
281 end . f i l e ("spot" , address (s p o t t e r)) ;

283 // Internal auth
284 vat . r e l y (address (end)) ;
285 ca t . r e l y (address (end)) ;
286 vow . r e l y (address (end)) ;
287 pot . r e l y (address (end)) ;

289 // Deploy ESM
290 esm = new ESM(gov , address (end) , address (p i t) , min) ;
291 end . r e l y (address (esm)) ;
292 }

Listing 3.47: Revised deployShutdown()

290 f unc t i on dep loyPause (u in t de lay , DSAuthor i ty a u t h o r i t y) pub l i c auth {
291 r equ i r e (address (d a i) != address (0) , "Missing previous step") ;
292 r equ i r e (address (end) != address (0) , "Missing previous step") ;
293 r equ i r e (address (va t) != address (0) , "Missing previous step") ;
294 r equ i r e (address (ca t) != address (0) , "Missing previous step") ;
295 r equ i r e (address (vow) != address (0) , "Missing previous step") ;
296 r equ i r e (address (pot) != address (0) , "Missing previous step") ;
297 r equ i r e (address (s p o t t e r) != address (0) , "Missing previous step") ;
298 r equ i r e (address (f l a p) != address (0) , "Missing previous step") ;
299 r equ i r e (address (f l o p) != address (0) , "Missing previous step") ;

35/50 PeckShield Audit Report #: 2019-16

Confidential

301 pause = pauseFab . newPause (de lay , address (0) , a u t h o r i t y) ;

303 vat . r e l y (address (pause . p roxy ())) ;
304 ca t . r e l y (address (pause . p roxy ())) ;
305 vow . r e l y (address (pause . p roxy ())) ;
306 j ug . r e l y (address (pause . p roxy ())) ;
307 pot . r e l y (address (pause . p roxy ())) ;
308 s p o t t e r . r e l y (address (pause . p roxy ())) ;
309 f l a p . r e l y (address (pause . p roxy ())) ;
310 f l o p . r e l y (address (pause . p roxy ())) ;
311 end . r e l y (address (pause . p roxy ())) ;

313 t h i s . s e t A u t h o r i t y (a u t h o r i t y) ;
314 t h i s . setOwner (address (0)) ;
315 }

Listing 3.48: Revised deployPause()

310 f unc t i on d e p l o y C o l l a t e r a l (bytes32 i l k , address adapte r , address p ip) pub l i c auth {
311 r equ i r e (i l k != bytes32 ("") , "Missing ilk name") ;
312 r equ i r e (adap t e r != address (0) , "Missing adapter address") ;
313 r equ i r e (p i p != address (0) , "Missing PIP address") ;
314 r equ i r e (address (pause) != address (0) , "Missing previous step") ;
315 r equ i r e (address (ca t) != address (0) , "Missing previous step") ;
316 r equ i r e (address (va t) != address (0) , "Missing previous step") ;
317 r equ i r e (address (j ug) != address (0) , "Missing previous step") ;

319 // Deploy
320 i l k s [i l k] . f l i p = f l i p F a b . newF l ip (address (va t) , i l k) ;
321 i l k s [i l k] . adap t e r = adap t e r ;
322 Spo t t e r (s p o t t e r) . f i l e (i l k , address (p i p)) ; // Set pip

324 // Internal references set up
325 ca t . f i l e (i l k , "flip" , address (i l k s [i l k] . f l i p)) ;
326 vat . i n i t (i l k) ;
327 j ug . i n i t (i l k) ;

329 // Internal auth
330 vat . r e l y (adap t e r) ;
331 i l k s [i l k] . f l i p . r e l y (address (end)) ;
332 i l k s [i l k] . f l i p . r e l y (address (pause . p roxy ())) ;
333 }

Listing 3.49: Revised deployCollateral ()

After the discussion with Maker Foundation, this issue has no impact because of the existence of
variable dependencies which guarantee the order of deployment functions. For example, the require

(address(vow) != address(0)) check in deployLiquidator() ensures deployTaxationAndAuctions() was
successfully executed with vow set before entering deployLiquidator(). Since deployTaxationAndAuctions
() checks require(address(vat) != address(0)), deployLiquidator() does not need to check vat. How-
ever, this implementation makes it difficult to understand and/or maintain the software.

36/50 PeckShield Audit Report #: 2019-16

Confidential

3.15 Excessive Authorization in Deployment

• ID: PVE-015

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: dss-deploy/src/DssDeploy.sol

• Category: Security Features [16]

• CWE subcategory: CWE-287 [6]

Description

During the deployment of various MCD modules, the rely() mechanism is used to configure the
trusted entities of a given contract. However, we identified some improper authorization settings:

229 f unc t i on dep loyTaxat i onAndAuct i ons (address gov) pub l i c auth {
230 r equ i r e (gov != address (0) , "Missing GOV address") ;
231 r equ i r e (address (va t) != address (0) , "Missing previous step") ;

233 // Deploy
234 j ug = jugFab . newJug (address (va t)) ;
235 pot = potFab . newPot (address (va t)) ;
236 f l a p = f l apFab . newFlap (address (va t) , gov) ;
237 f l o p = f l opFab . newFlop (address (va t) , gov) ;
238 vow = vowFab . newVow(address (va t) , address (f l a p) , address (f l o p)) ;

240 // Internal references set up
241 j ug . f i l e ("vow" , address (vow)) ;
242 pot . f i l e ("vow" , address (vow)) ;

244 // Internal auth
245 vat . r e l y (address (vow)) ;
246 vat . r e l y (address (j ug)) ;
247 vat . r e l y (address (pot)) ;
248 f l a p . r e l y (address (vow)) ;
249 f l o p . r e l y (address (vow)) ;
250 }

Listing 3.50: dss−deploy/src/DssDeploy.sol::deployTaxationAndAuctions()

As shown in the above code snippet, vat is set to trust vow to call its functions in line 245.
However, if we look into the vow implementation, the only function of vat called by vow is vat.

heal() which needs no authorization at all. In other words, there is no auth modifier in vat.heal()

declaration.

238 f unc t i on hea l (u in t rad) ex te rna l note {
239 address u = msg . sender ;
240 s i n [u] = sub (s i n [u] , rad) ;
241 da i [u] = sub (da i [u] , rad) ;
242 v i c e = sub (v i c e , rad) ;
243 debt = sub (debt , rad) ;

37/50 PeckShield Audit Report #: 2019-16

Confidential

244 }

Listing 3.51: dss/src/vat. sol ::heal ()

We point out that the documented contract-level permission graph [2] contains the rely arrow
from vat to vow, which could be removed for consistency.

266 f unc t i on deployShutdown (address gov , address p i t , uint256 min) pub l i c auth {
267 r equ i r e (address (ca t) != address (0) , "Missing previous step") ;

269 // Deploy
270 end = endFab . newEnd () ;

272 // Internal references set up
273 end . f i l e ("vat" , address (va t)) ;
274 end . f i l e ("cat" , address (ca t)) ;
275 end . f i l e ("vow" , address (vow)) ;
276 end . f i l e ("pot" , address (pot)) ;
277 end . f i l e ("spot" , address (s p o t t e r)) ;

279 // Internal auth
280 vat . r e l y (address (end)) ;
281 ca t . r e l y (address (end)) ;
282 vow . r e l y (address (end)) ;
283 pot . r e l y (address (end)) ;

285 // Deploy ESM
286 esm = new ESM(gov , address (end) , address (p i t) , min) ;
287 end . r e l y (address (esm)) ;
288 }

Listing 3.52: dss/src/vat. sol ::heal ()

In addition, there exists another authorization setting that does not comply with the same permis-
sion graph. Specifically, in line 282, vow trusts end because of the need of calling vow.cage() when end

kicks off its first step of Global Settlement. However, the permission graph misses one rely arrow
from vow to end. This leads to inconsistency and brings unnecessary confusions for understanding.

Recommendation Remove the unnecessary rely() from deployTaxationAndAuctions() and ac-
cordingly fix the contract-level permission graph in [2] (with the addition of rely arrow from vow to
end and the removal of rely arrow from vat to vow).

229 f unc t i on dep loyTaxat i onAndAuct i ons (address gov) pub l i c auth {
230 r equ i r e (gov != address (0) , "Missing GOV address") ;
231 r equ i r e (address (va t) != address (0) , "Missing previous step") ;

233 // Deploy
234 j ug = jugFab . newJug (address (va t)) ;
235 pot = potFab . newPot (address (va t)) ;
236 f l a p = f l apFab . newFlap (address (va t) , gov) ;
237 f l o p = f l opFab . newFlop (address (va t) , gov) ;

38/50 PeckShield Audit Report #: 2019-16

Confidential

238 vow = vowFab . newVow(address (va t) , address (f l a p) , address (f l o p)) ;

240 // Internal references set up
241 j ug . f i l e ("vow" , address (vow)) ;
242 pot . f i l e ("vow" , address (vow)) ;

244 // Internal auth
245 vat . r e l y (address (j ug)) ;
246 vat . r e l y (address (pot)) ;
247 f l a p . r e l y (address (vow)) ;
248 f l o p . r e l y (address (vow)) ;
249 }

Listing 3.53: Revised dss−deploy/src/DssDeploy.sol::deployTaxationAndAuctions()

3.16 Collateral Check in MCD CDP Manager

• ID: PVE-016

• Severity: Informational

• Likelihood: High

• Impact: None

• Target: dss-cdp-manager/src/DssCdpManager
.sol

• Category: Coding Practices [18]

• CWE subcategory: CWE-628 [12]

Description

The DssCdpManager smart contract provides an interface to manage MCD-based CDPs in a way similar
to manage SCD-based CDPs. However, when opening a CDP, it does not validate the provided
collateral type, i.e., ilk. In other words, a user can open a CDP by providing an arbitrary ilk. As
a result, current DssCdpManager implementation allows the opening of a basically non-functional CDP
and defers the warning back to the owner until a later stage when the opened CDP is being operated
(e.g., via frob). It is better to add sanity check up-front to ensure the provided collateral type is
currently being supported in MCD.

108 // Open a new cdp for a given usr address.
109 f unc t i on open (
110 bytes32 i l k ,
111 address u s r
112) pub l i c note r e tu rn s (u in t) {
113 r equ i r e (u s r != address (0) , "usr -address -0") ;

115 cdp i = add (cdp i , 1) ;
116 urns [cdp i] = address (new UrnHandler (va t)) ;
117 owns [cdp i] = u s r ;

39/50 PeckShield Audit Report #: 2019-16

Confidential

118 i l k s [c dp i] = i l k ;

120 // Add new CDP to double linked list and pointers
121 i f (f i r s t [u s r] == 0) {
122 f i r s t [u s r] = cdp i ;
123 }
124 i f (l a s t [u s r] != 0) {
125 l i s t [c dp i] . p r ev = l a s t [u s r] ;
126 l i s t [l a s t [u s r]] . nex t = cdp i ;
127 }
128 l a s t [u s r] = cdp i ;
129 count [u s r] = add (count [u s r] , 1) ;

131 emit NewCdp(msg . sender , us r , c dp i) ;
132 re tu rn cdp i ;
133 }

Listing 3.54: DssCdpManager.sol::open()

As shown in the above code snippet, the CDP is opened without checking the validity of ilk.

Recommendation Validate the provided collateral type ilk when a new MCD CDP is being
opened. The validity can simply check whether the given ilk has been initialized yet in the MCD
CDP engine vat.

6 cont ract VatL ike {
7 f unc t i on i l k s (bytes32) pub l i c view re tu rn s (uint , uint , uint , uint , u in t) ;
8 f unc t i on urns (bytes32 , address) pub l i c view re tu rn s (uint , u in t) ;
9 f unc t i on hope (address) pub l i c ;

10 f unc t i on f l u x (bytes32 , address , address , u in t) pub l i c ;
11 f unc t i on move (address , address , u in t) pub l i c ;
12 f unc t i on f r o b (bytes32 , address , address , address , i n t , i n t) pub l i c ;
13 f unc t i on f o r k (bytes32 , address , address , i n t , i n t) pub l i c ;
14 }

17 // Open a new cdp for a given usr address.
18 f unc t i on open (
19 bytes32 i l k ,
20 address u s r
21) pub l i c note r e tu rn s (u in t) {
22 r equ i r e (u s r != address (0) , "usr -address -0") ;

24 (, u in t r a t e , , ,) = vat . i l k s (i l k) ;
25 r equ i r e (r a t e != 0) ;

27 cdp i = add (cdp i , 1) ;
28 urns [cdp i] = address (new UrnHandler (va t)) ;
29 owns [cdp i] = u s r ;
30 i l k s [c dp i] = i l k ;

40/50 PeckShield Audit Report #: 2019-16

Confidential

32 // Add new CDP to double linked list and pointers
33 i f (f i r s t [u s r] == 0) {
34 f i r s t [u s r] = cdp i ;
35 }
36 i f (l a s t [u s r] != 0) {
37 l i s t [c dp i] . p r ev = l a s t [u s r] ;
38 l i s t [l a s t [u s r]] . nex t = cdp i ;
39 }
40 l a s t [u s r] = cdp i ;
41 count [u s r] = add (count [u s r] , 1) ;

43 emit NewCdp(msg . sender , us r , c dp i) ;
44 re tu rn cdp i ;
45 }

Listing 3.55: Revised DssCdpManager.sol

3.17 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version con-
sistencies, it is always suggested to use fixed compiler versions whenever possible. As an example,
we highly encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.5.0;

instead of pragma solidity ^0.5.0;.
Moreover, we strongly suggest not to use experimental Solidity features or third-party unaudited

libraries. If necessary, refactor current code base to only use stable features or trusted libraries. In
case there is an absolute need of leveraging experimental features or integrating external libraries,
make necessary contingency plans.

41/50 PeckShield Audit Report #: 2019-16

Confidential

4 | Conclusion

In this audit, we have analyzed the Multi-Collateral Dai (MCD) implementation. During our auditing
process, we are constantly impressed by the thinkings behind the Multi-Collateral Dai (MCD). It is
indeed a rather complex system with various functionalities, but the entire system is cleanly designed
and engineered. The related smart contracts are also neatly organized and elegantly implemented.
Those identified issues are promptly confirmed and fixed.

Meanwhile, we emphasize that smart contracts are still in an early, but exciting stage of develop-
ment. As disclaimed in Section 1.4, we greatly welcome any constructive feedbacks or suggestions
regarding this report, including our methodology, audit findings, or potential gaps in scope/coverage.

42/50 PeckShield Audit Report #: 2019-16

Confidential

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [24, 25,
26, 27, 29].

• Result: Not found

• Severity: Critical

43/50 PeckShield Audit Report #: 2019-16

Confidential

5.1.5 Reentrancy

• Description: Reentrancy [30] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

44/50 PeckShield Audit Report #: 2019-16

Confidential

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

45/50 PeckShield Audit Report #: 2019-16

Confidential

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

46/50 PeckShield Audit Report #: 2019-16

Confidential

5.3.2 Use Fixed Compiler Version

• Description: Use fixed compiler version is better.

• Result: Not found

• Severity: Low

5.3.3 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.4 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.5 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

47/50 PeckShield Audit Report #: 2019-16

Confidential

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] Maker Foundation. Kovan deploy. https://github.com/makerdao/dss/wiki/Auth#

kovan-deploy.

[3] HaleTom. Resolution on the EIP20 API Approve / TransferFrom multiple withdrawal attack.

https://github.com/ethereum/EIPs/issues/738.

[4] MITRE. CWE-1120: Excessive Code Complexity. https://cwe.mitre.org/data/definitions/1120.

html.

[5] MITRE. CWE-1164: Irrelevant Code. https://cwe.mitre.org/data/definitions/1164.html.

[6] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[7] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[8] MITRE. CWE-369: Divide By Zero. https://cwe.mitre.org/data/definitions/369.html.

[9] MITRE. CWE-440: Expected Behavior Violation. https://cwe.mitre.org/data/definitions/440.

html.

[10] MITRE. CWE-474: Use of Function with Inconsistent Implementations. https://cwe.mitre.org/

data/definitions/474.html.

48/50 PeckShield Audit Report #: 2019-16

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://github.com/makerdao/dss/wiki/Auth#kovan-deploy
https://github.com/makerdao/dss/wiki/Auth#kovan-deploy
https://github.com/ethereum/EIPs/issues/738
https://cwe.mitre.org/data/definitions/1120.html
https://cwe.mitre.org/data/definitions/1120.html
https://cwe.mitre.org/data/definitions/1164.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/440.html
https://cwe.mitre.org/data/definitions/440.html
https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/474.html

Confidential

[11] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[12] MITRE. CWE-628: Function Call with Incorrectly Specified Arguments. https://cwe.mitre.org/

data/definitions/628.html.

[13] MITRE. CWE-668: Exposure of Resource to Wrong Sphere. https://cwe.mitre.org/data/

definitions/668.html.

[14] MITRE. CWE-754: Improper Check for Unusual or Exceptional Conditions. https://cwe.mitre.

org/data/definitions/754.html.

[15] MITRE. CWE-862: Missing Authorization. https://cwe.mitre.org/data/definitions/862.html.

[16] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[17] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[18] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[19] MITRE. CWE CATEGORY: Behavioral Problems. https://cwe.mitre.org/data/definitions/438.

html.

[20] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[21] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[22] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[23] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

49/50 PeckShield Audit Report #: 2019-16

https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/668.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/438.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Confidential

[24] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[25] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[26] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[27] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[28] PeckShield. PeckShield Inc. https://www.peckshield.com.

[29] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[30] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

50/50 PeckShield Audit Report #: 2019-16

https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Multi-Collateral Dai (MCD)
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Potential Denial-of-Service in Global Settlement
	Potential Divide-By-Zero in Spotter
	Inconsistent Time Type in Debt Engine
	approve()/transferFrom() Race Condition
	Unhandled Auction Corner Cases
	CDP Fork Restrictiveness
	Drip Efficiency Improvement
	Debt Auction Prevention
	Misadjusted CDP Cancellation
	Auction Kick-Off Authorization
	Auction Tick Validity
	Auction Deal Inconsistency
	Bloated Setter Interface
	Missed Deployment Dependency Checks
	Excessive Authorization in Deployment
	Collateral Check in MCD CDP Manager
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Use Fixed Compiler Version
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

