

MCD Core Smart Contracts
Security Assessment
August 30, 2019

Prepared For:
Chris Smith | Maker Foundation
chriss@makerdao.com

Mariano Conti | Maker Foundation
mariano@makerdao.com

Prepared By:
JP Smith | Trail of Bits
jp@trailofbits.com

Rajeev Gopalakrishna | Trail of Bits
rajeev@trailofbits.com

Sam Moelius | Trail of Bits
sam.moelius@trailofbits.com

David Pokora | Trail of Bits
david.pokora@trailofbits.com

Changelog:
August 30, 2019: Initial delivery to Maker Foundation
October 3, 2019: Public release

mailto:chriss@makerdao.com
mailto:mariano@makerdao.com
mailto:jp@trailofbits.com
mailto:rajeev@trailofbits.com
mailto:sam.moelius@trailofbits.com
mailto:david.pokora@trailofbits.com

Executive Summary

Automated Testing and Analysis

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Auctions are susceptible to transaction-reordering attacks
2. ABIEncoderV2 is not production-ready
3. k-dss is out of sync with other repositories
4. auth-checker’s use of checkRely is incomplete
5. Too many notions of “permission”
6. ERC20 transferFrom often does not follow spec
7. Dai Savings Rate locking is ineffective
8. Race condition in the ERC20 “approve” function may lead to token theft
9. Race condition involving Dai “permit” nonces
10. Anyone can approve themselves to take Dai owned by address 0
11. “file” methods do not revert when “what” argument is unrecognized
12. Spotter’s “file” method lacks a “what” argument
13. Documentation of Dai Savings Rate is inaccurate
14. A Denial of Service attack can obstruct Flop auctions

A. Vulnerability classifications

B. Non-security related findings

C. Measuring klab specifications with Slither
Running the scripts

D. Symbolic exploration of DSS with Manticore

E. Converting unit tests to property tests with Echidna
Running the Echidna analysis

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 1

Executive Summary
From July 29 through August 30, 2019, Maker Foundation engaged with Trail of Bits to
review the security of the Multi-Collateral Dai (MCD) Core Smart Contracts. Trail of Bits
conducted this assessment over the course of 16 person-weeks, with four engineers
working from the repositories/commits listed under Coverage below.

During the first week, we focused on familiarizing ourselves with the codebase and
ensuring that we could deploy and interact with the system. We ran Slither over all the
contracts and began manually reviewing them. We also began work on Slither extensions
to identify Solidity functions not covered by a klab specification.

During the second week, we manually reviewed code involving permissions (e.g., DSAuth,
DSAuthority, DSRoles, scripts/auth-checker), ERC20 tokens (e.g., DSToken), and the Dai
Savings Rate (e.g., Pot). We completed triage of the Slither results, and we enhanced our
Slither extensions to verify that all of the MCD’s uses of ABIEncoderV2 are covered by a klab
specification. Finally, we began extending Echidna to verify that properties hold across gaps
in block numbers and block times, up to user-determined bounds.

During the third week, we:

● Finished manually reviewing code that involves permissions.
● Began subjecting the Vat contract to multiple symbolic transactions using

Manticore.
● Began manually reviewing the price oracle infrastructure (e.g., the median and

oracle security manager contracts).
● Manually reviewed the uses of ecrecover .

During the fourth week, we:

● Improved our Manticore testing framework by expanding the contracts it analyzes
and tailoring property tests to MCD.

● Continued our analysis of the DSR and its implementation.
● Continued to examine the price oracle infrastructure, including its use of Omnia,

Setzer, and the Scuttlebutt protocol.
● Continued to extend Echidna.

During the fifth week, we continued to push our Manticore testing framework by tweaking
parameters to expand code coverage and implementing additional MCD-specific property
tests. We also revisited the deployment code (as requested by the client). In particular, we
manually introduced errors into the deployment scripts and verified that the errors were
caught and reported. Finally, we completed work on our Echidna extensions.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 2

Many of our findings concern unanticipated interactions among multiple contracts (e.g.,
TOB-MCD-014 and several entries in Appendix B: Non-security related findings). An
additional category of findings might be called “unconventional” or “unanticipated”
interaction with the outside world (e.g., transactions made in an unexpected way
(TOB-MCD-007 , TOB-MCD-010), or in an unexpected order (TOB-MCD-001 , TOB-MCD-008 ,
TOB-MCD-009). Compared to other assessments, relatively few findings involved data
validation (only TOB-MCD-011 and TOB-MCD-012). This is perhaps not surprising, as the
use of klab seems to have eliminated many of these types of vulnerabilities.

While we feel the use of short names is a detriment to understanding the code, we found
the code overall to be clean and easy to read. The MCD 101 document was invaluable in
helping us understand how the contracts work, and the Glossary also helped significantly.

The use of klab seems to have eliminated much of the “low-hanging fruit” in terms of
vulnerabilities, and we recommend its continued use. However, since the klab specification
must be produced by a human, we also recommend running Manticore. Doing so can
reveal errors with less manual effort. Our own Manticore efforts were limited by time and
available CPUs; if we had more of either resource, we would have worked to expand
Manticore’s coverage of the contracts. The Maker Foundation should consider running
Manticore regularly and making it part of their CI process.

Throughout the audit, we developed several automated analyses to help discover potential
bugs in the code. A high-level description of our approach is available below, and
tool-specific information is available in the appendices:

● Appendix C documents our use of Slither for static analysis, particularly to estimate
klab coverage.

● Appendix D documents our use of the Manticore symbolic executor to look for
vulnerabilities involving multiple transactions.

● Appendix E documents our use of the Echidna property-testing framework to
parametrize existing tests.

We delivered all code used in analysis along with this report to enable continuous analysis
as development proceeds.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 3

https://github.com/makerdao/developerguides/blob/master/mcd/mcd-101/mcd-101.md
https://github.com/makerdao/dss/wiki/Glossary

Automated Testing and Analysis
Much of the time spent on this engagement was focused on automated analysis. We began
by using Slither to discover what properties were already verified by klab. We discovered
that slightly more than two-thirds of functions had no klab coverage, and what properties
existed were typically specific to a single function. Appendix C contains data produced by
this analysis, technical details, and reproduction instructions.

These results were in line with our expectations. K specifications typically describe the
behavior of a specific function, so any functions without an associated kspec will be
uncovered. Function-specific coverage will not catch bugs that require multiple transactions
to exploit or bugs in uncovered functions. The results also presented a clear direction for
the development of our own analysis: By writing analyses that generalize over transaction
sequences rather than focusing on specific functions, we could verify higher-level
properties and achieve more comprehensive coverage.

Trail of Bits maintains two tools for reasoning about transaction sequences: Manticore , a
symbolic executor, and Echidna , a property-based testing framework. In the course of this
assessment, we employed both. We used Echidna to parametrize the existing unit tests and
thus dramatically expand their coverage, and Manticore to symbolically execute short
transaction sequences while detecting possible correctness issues.

The Echidna analysis is ultimately an iteration on existing testing practices. The DSS already
has an impressive number of unit tests, most of which perform a specific transaction
sequence and then assert an expected result. We modified these tests to use random
values generated by Echidna. Properties that were previously checked after a single call
sequence can now be checked after thousands of them, all randomly generated. Technical
details and instructions to reproduce can be found in Appendix E .

While the Echidna analysis can be seen as an iteration on existing practices, the Manticore
analysis is more novel. Manticore comes with an existing corpus of “bug detectors” that
determine whether potential correctness issues occur in the execution of a call sequence.
We augmented these with our own custom set of invariants, then used symbolic execution
to check for their presence in short call sequences. While this was quite resource intensive,
it ultimately led to TOB-MCD-011 and TOB-MCD-012 . Technical details and instructions to
reproduce can be found in Appendix D .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 4

https://github.com/trailofbits/manticore
https://github.com/crytic/echidna

Project Dashboard
Application Summary

Name Multi-Collateral Dai (MCD) Core Smart
Contracts

Version See Coverage below

Type Solidity, Bash script

Platforms EVM, POSIX

Engagement Summary

Dates July 29 through August 30, 2019

Method Whitebox

Consultants Engaged 4

Level of Effort 16 person-weeks

Vulnerability Summary

Total High-Severity Issues 0

Total Medium-Severity Issues 2 ◼◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 8 ◼◼◼◼◼◼◼◼

Total 14

Category Breakdown

Access Controls 4 ◼◼◼◼

Cryptography 1 ◼

Data Validation 2 ◼◼

Denial of Service 1 ◼

Documentation 1 ◼

Patching 2 ◼◼

Timing 3 ◼◼◼

Total 14

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 5

Engagement Goals
Trail of Bits and the Maker Foundation scoped the engagement to provide a security
assessment of:

● Dai Stablecoin System (DSS) contracts (e.g., Cat, Jug, Vat)
● Governance contracts (e.g., DSChief, DSPause, DSToken)
● Price oracle infrastructure (e.g., median and oracle security module contracts)
● Adapters (GemJoin, ETHJoin, DaiJoin)
● Front-ends (e.g., DssCdpManager)
● Off-chain infrastructure (Omnia, Setzer, Scuttlebutt)
● Deployment scripts (e.g., base-deploy, deploy-core, auth-checker)

Specifically, Maker Foundation emphasized the following areas of focus:

● Code Correctness
○ Review higher invariants not expressible as a function-local property.
○ Fuzz the codebase for bad behavior induced by multiple, sequential function

calls.
○ Carefully consider the failure modes of the authentication system, and

ensure the system overall is resilient to individual key loss or theft.
○ Read documentation thoroughly, and ensure users can easily understand

how to use the system safely and correctly.

● Verification System
○ Ensure the verification system is sound and applied correctly.
○ Review the set of verified properties for coverage.
○ Develop verification-aware custom tooling to identify blind spots.

● Runtime Environment Interaction

○ Review possible information-theoretical bugs (e.g., frontrunning attacks).
○ Review possible finality-related bugs (e.g., eclipse attacks).
○ Prepare for possible changes to the Ethereum runtime (e.g., changes to the

gas cost model, changes to the consensus model, sharding).

● Availability
○ Ensure the system can never become “deadlocked” or unavailable.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 6

Coverage
Trail of Bits manually reviewed and used Slither to analyze all of the following repositories: 1

ds-auth f783169408c278f85e26d77ba7b45823ed9503dd

ds-chief ea05ee0413a8b3852142664a6c04d6e4923be426

ds-exec c53aab4ba91645b30b0644972ef016b5ee606ca8

ds-guard 4678e1c74fce1542f1379f11325d7bfbbb897344

ds-math 784079b72c4d782b022b3e893a7c5659aa35971a

ds-note beef8166f2184a4bac3d02abdb944647fd735060

ds-pause 81fd9d43e56615267a10e29710716342bcca0ce3

ds-proxy 379f5e2fc0a6ed5a7a96d3f211cc5ed8761baf00

ds-roles 01383725a4240000c0e274e55bdcf251570fd486

ds-spell c908b7807f08661b4eca97adff6d9561d0116244

ds-stop 6e2bda69cb3cbf25a475491d9bc22969adb05993

ds-test a4e40050b809705b15867939f5829540c50cb84f

ds-thing 5e49fcbdf4ef8ccd241423ed114576f51c42f1e0

ds-token cee36a14685b3f93ffa0332853d3fcd943fe96a5

ds-value d2107c1751f086aed3c38a2f433d6945444af7d6

ds-value f3071713afbd583991637f8cfab5e0d29466dffd

ds-weth dfada5bca7a00046c1ddc37c0c43106a8c0a4e5a

dss 7645fd00eedbad700a89d03e18dd2aa397c3d743

526fa6afb9ea771f846b895ae0aee361876f2bdb

dss-add-ilk-spell a43e3d47160d12ee9428ff3e0ebc5129de2caf96

dss-cdp-manager 11cace63e53d8e4fa64889701c290f741ae32330

b0dfe6a02c876a08c8ff57c8561bd591d4c8320f

dss-deploy 4cf50f20e481a0f9026354dd45bd16bcb15e4501

6100d63d6d1abbbfb5d57def8336b387a14b804e

dss-proxy-actions 928f13b8f384f096ac3128ac8729bfa6ff68de53

696b9acd6040347781a5da97bc08c0890a49c9d3

erc20 f322aaca414db343337814097d2af43214bee96c

esm e0a85d6215cec2a7786c1dcaee188a3ff393710d

gov-polling-generator d08e43ee1a8d6daac3fc0bc4aee5a0c92f62c2e8

line-spell bd40ebd89d28a2428a7500027b27c3888f369e01

394ae373b59a2636a5f830f42986a468d492d70a

median a5f39fab14f3b3bcd9576072da59984af8952606

multicall b8771d9fe2b1429ae95cae622c4d880fd897562a

oracles-v2 fa6f5782b072d638f8f6b505c7d6dc726dd97e87

osm 504c47437916e29d918a9d1f40eb1f7595f3e9ce

1 The appearance of two commit hashes means that the repository was upgraded midway through
the assessment.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 7

proxy-registry 1aa2ba356802a66f2de1f0ff78fabe1756b905a5

scd-mcd-migration ebc09b3094ca1befeb08c799727d6a59a23a1427

setzer bc8100bbfd5b2b0b8495058019ef297c7d319e9b

testchain-medians 23524894915202452f5bb39e7c1d4375a4482c4f

testchain-pause-proxy-actions b33c2d9c8354b294e3d4e7d7da8f60a63780790f

8ab93d145b11101138447af3888420ee5753e2cd

token-faucet d7349d13f6cd83e8d0aa21e93544988fab0b6b24

vote-proxy 6fdbee3ac48bb915e715668374c1deba95cdb6f6

Manual review resulted in TOB-MCD-001 , TOB-MCD-005 , TOB-MCD-007 , TOB-MCD-008 ,
TOB-MCD-009 , TOB-MCD-010 , TOB-MCD-013 , and TOB-MCD-014 , as well as entries in
Appendix B .

Slither identified TOB-MCD-002 , TOB-MCD-006 , and some entries in Appendix B . Our Slither
extensions determined which contracts were and were not covered by klab specifications,
leading to TOB-MCD-003 . In addition:

● The DSS and governance contracts were deployed and the contents of their wards
(i.e., rely / deny) mappings were extracted. We then checked the results against what
was verified by the auth-checker script. This effort led to TOB-MCD-004 . We carried
out a similar analysis on the Vat’s can (i.e., hope / nope) mapping.

● The DSS contracts and DssCdpManager were subject to multiple symbolic
transactions using Manticore. Manticore includes a standard battery of tests for
“bad behavior” (e.g., reads from uninitialized storage, integer overflows, etc.). In
addition, we wrote MCD-specific property tests. These efforts resulted in
TOB-MCD-011 and TOB-MCD-012 , as well as entries in Appendix B .

● The deployment scripts had errors manually introduced into them, and we verified
that those errors were caught and reported. This effort did not result in any
findings, but did increase our confidence in the correctness of the deployment
scripts.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 8

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Document that auctions are susceptible to transaction-reordering attacks
(TOB-MCD-001). This will alert users to the risk while alternative solutions are explored.

❑ Use neither ABIEncoderV2 nor any other experimental Solidity features
(TOB-MCD-002). Refactor the code to avoid passing or returning arrays of strings to and
from functions. ABIEncoderV2 has been the source of numerous bugs, and its use presents
unnecessary risk.

❑ Update the k-dss repository to link against the current master branch of each
system component (TOB-MCD-003). Alternatively, document the version of each MCD
module that is verified. This will help to ensure that the code verified by klab is also the
code that is deployed.

❑ Adjust the auth-checker script so that it verifies the presence of the three edges
mentioned in TOB-MCD-004 . This will help to ensure that the code functions properly
once deployed.

❑ Consider ways that MCD’s numerous permissions mechanisms might be
consolidated (TOB-MCD-005). Consolidating the permissions mechanisms would make it
easier to verify that they have been configured correctly. This would, in turn, make it less
likely for bugs to arise in the future.

❑ Remove the check that allows transferFrom to succeed without approval if src
refers to msg.sender (TOB-MCD-006). Update all code which depended on transferFrom
not expecting approval in this case.

❑ Don’t require “locking” to earn interest on Dai (TOB-MCD-007). Instead of keeping Dai
Savings Rate logic in pot.sol , apply it to the ERC20 balance whether it’s locked or not.
Alternatively, implement liquidity controls such as time-restricted withdrawals so “locking”
is more meaningful.

❑ Use two non-ERC20 functions, allowing a user to increase and decrease the
approval, to work around the known ERC20 race condition (TOB-MCD-008). Ensure

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 9

users are aware of this extra functionality, and encourage them to make use of it when
appropriate.

❑ Implement mechanisms to watch for abuses of the permit method, as described in
TOB-MCD-009 . If such abuses are detected, the Maker Foundation can take steps to alert
its users, and possibly accelerate development of an alternative solution.

❑ Modify permit to explicitly disallow having a holder of 0 (TOB-MCD-010). There
seems to be no legitimate reason for this address to hold Dai.

❑ Have file methods revert when the what argument is unrecognized, like in Figure 2
of TOB-MCD-011 . This will help to identify situations where an incorrect what argument is
used in a file call (e.g., because the argument was misspelled).

❑ Add a what argument to the Spotter file method that lacks such an argument
(TOB-MCD-012). This will help to distinguish it from the other file method. The similarity
of their present signatures could lead to errors.

❑ Update the Medium post and whitepaper to clarify the function of the DSR
(TOB-MCD-013). This will help to prevent misunderstandings concerning how changes in
the DSR affect the Dai supply.

❑ Eliminate the requirement in vow.flop that vat.dai(address(this)) == 0
(TOB-MCD-014). This will eliminate a potential Denial of Service attack,

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 10

Long Term
❑ Investigate using a Dutch or sealed-bid auction for each type of auction
(TOB-MCD-001). Use of either one could eliminate the possibility of a
transaction-reordering attack.

❑ Integrate static analysis tools like Slither into your CI pipeline to detect unsafe
pragmas (TOB-MCD-002). This will identify features in the Solidity compiler that might
otherwise be assumed safe.

❑ Consider whether using one instance of a DSGuard contract could meet your
permissions needs (TOB-MCD-005). A simpler permissions model would be easier to
reason about, and would therefore be less error-prone.

❑ Review the ERC20 specification and verify your contracts meet the standard
(TOB-MCD-006). When interfacing with external ERC20 tokens, be wary of popular tokens
that do not properly implement the standard (e.g., many tokens do not include return
values for approve , transfer , transferFrom , etc.).

❑ Avoid situations where using Dai through a third-party smart contract is
preferable to using Dai through a MakerDAO smart contract (TOB-MCD-007). This will
dramatically reduce security risks in untrusted, third-party code and prevent many scams
that impersonate legitimate Dai tooling.

❑ Maintain one nonce per Dai holder-spender pair, and add a second type of signed
message (analogous to permit) to set a spender’s nonce to the max of the nonce’s current
value and a constant (TOB-MCD-009).

❑ Audit uses of ecrecover for authentication issues (TOB-MCD-010). Ensure that its
failure case is explicitly handled. Consider replacing it with an ECDSA library .

❑ Incorporate fuzzing or symbolic execution into your CI, and regularly review the
results . We found TOB-MCD-011 using Manticore, which produced successful calls to file
methods with garbage what arguments.

❑ Ensure consistency among function signatures as new functions are introduced to
the code base (TOB-MCD-012). Such checks will help to prevent future situations where
two functions have overly similar signatures.

❑ Regularly review all public documentation for accuracy as Dai functionality is
updated (TOB-MCD-013). This will help to catch errors within such documentation, and
promote understanding within the community on how MCD functions.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 11

https://github.com/crytic/slither
https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ecdsa

❑ Investigate whether heal should be called upon entry to flop (TOB-MCD-014). If such
a call does introduce additional risks, then it presents an alternative means to preventing a
potential Denial of Service attack.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 12

Findings Summary
Title Type Severity

1 Auctions are susceptible to
transaction-reordering attacks

Timing Low

2 ABIEncoderV2 is not production-ready Patching Informational

3 k-dss is out of sync with other
repositories

Patching Informational

4 auth-checker’s use of checkRely is
incomplete

Access Controls Informational

5 Too many notions of “permission” Access Controls Informational

6 ERC20 transferFrom often does not follow
spec

Access Controls Informational

7 Dai Savings Rate locking is ineffective Access Controls Medium

8 Race condition in the ERC20 “approve”
function may lead to token theft

Timing Informational

9 Race condition involving Dai “permit”
nonces

Timing Informational

10 Anyone can approve themselves to take
Dai owned by address 0

Cryptography Low

11 “file” methods do not revert when “what”
argument is unrecognized

Data Validation Low

12 Spotter’s “file” method lacks a “what”
argument

Data Validation Low

13 Documentation of Dai Savings Rate is
inaccurate

Documentation Informational

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 13

14 A Denial of Service attack can obstruct
Flop auctions

Denial of
Service

Medium

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 14

1. Auctions are susceptible to transaction-reordering attacks
Severity: Low Difficulty: High
Type: Timing Finding ID: TOB-MCD-001
Target: Flip, Flap, and Flop

Description
MCD features three types of auctions. Each is susceptible to a transaction-reordering
attack, where a miner replaces a legitimate bid with their own bid:

● A Flip auction occurs when a Collateral Debt Position (CDP) loses too much of its
value relative to the Dai borrowed against it. The collateral is auctioned off for Dai.

● A Flap auction occurs to dispense Dai collected as stability fees. The Dai is auctioned
off for MKR. The MKR corresponding to the winning bid is burned.

● A Flop auction occurs when bad debt must be covered. A descending amount of
MKR is auctioned off for a fixed amount of Dai (i.e., the MKR bids are given in
descending order). An amount of MKR corresponding to the winning bid is minted.

Each of these auctions features a mandatory bid increase of 5%. (For Flop auctions,
increasing the new bid by 5% must still make that bid less than the preceding bid of MKR.)
If an auction participant is the victim of a transaction-reordering attack, this mandatory bid
increase penalizes them. The victim must choose to either give up on bidding or incur a 5%
penalty on their next bid.

Also, Flap auctions are susceptible to a distinct type of transaction-reordering attack. If a
miner observes a large bid in a Flap auction, the miner knows that a large amount of MKR
is about to go out of circulation, which will lead to an MKR price increase. The miner could
submit a buy order on an exchange for MKR prior to mining the bid, which would enable
the miner to obtain MKR at an unfairly low price.

Exploit Scenario
Eve is both a miner and a holder of Dai. Eve currently holds the highest bid on some CDP.
Eve notices that Bob has submitted a bid of X Dai, more than her own bid. Eve mines (i.e.,
wins the race for) the next block with her own bid of X Dai ahead of Bob’s. Bob loses the
cost of his gas and must choose to either stop bidding or bid ≥ 1.05 * X Dai.

Recommendation
Short term, document that auctions are susceptible to transaction-reordering attacks.

Long term, investigate using a Dutch or sealed-bid auction (the latter via a commit-reveal 2

scheme) for each type of auction.

2 Investopedia: Dutch Auction : “A Dutch auction also refers to a type of auction in which the price on
an item is lowered until it gets a bid. The first bid made is the winning bid and results in a sale,
assuming that the price is above the reserve price.”

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 15

https://www.investopedia.com/terms/d/dutchauction.asp

2. ABIEncoderV2 is not production-ready
Severity: Informational Difficulty: High
Type: Patching Finding ID: TOB-MCD-002
Target: cat.sol , end.sol , jug.sol

Description
The contracts use the new Solidity ABI encoder, ABIEncoderV2 . This encoder is still
experimental and is not ready for production use.

More than three percent of all GitHub issues for the Solidity compiler are related to
experimental features, with ABIEncoderV2 constituting the vast majority of them. Several
issues and bug reports are still open and unresolved. More than 20 high-severity bugs over
the past year have been associated with ABIEncoderV2 , and some are so recent they have
not yet been included in a Solidity release.

For example, earlier this year a severe bug was found in the encoder and was introduced in
Solidity 0.5.5.

Exploit Scenario
The MakerDAO contracts are deployed. After the deployment, a bug is found in the
encoder. As a result, the contracts are broken and can be exploited, perhaps to incorrectly
value a CDP.

Recommendation
Short term, do not use either ABIEncoderV2 or any other experimental Solidity features.
Refactor the code to avoid passing or returning arrays of strings to and from functions.

Long term, integrate static analysis tools like Slither into your CI pipeline to detect unsafe
pragmas.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 16

https://github.com/ethereum/solidity/issues?q=is%3Aissue+abiencoderv2+label%3A%22bug+%3Abug%3A%22+sort%3Acreated-desc
https://github.com/ethereum/solidity/issues?q=is%3Aissue+abiencoderv2+label%3A%22bug+%3Abug%3A%22+sort%3Acreated-desc
https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/
https://github.com/crytic/slither

3. k-dss is out of sync with other repositories
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-MCD-003
Target: dss-deploy-scripts

Description
k-dss provides klab specifications for an unspecified version of MCD. It is out of sync with
the master branches of the repositories it verifies.

The klab specification for Flapper.kick provided by the k-dss repo references a new
version of the dss , where flap.sol took input parameters that were different from the
version used by MCD deployment scripts:

● Verified in k-dss : 057fdfa5e974dca4dee5f9238f61a0f0ce2aa9c4
● Version in dss-deploy-scripts : 880d592091d5582adc2fda0bdb56c76e3b7457c3

The provided specification for Flapper.kick references a function prototype:

interface kick(uint256 lot, uint256 bid)

Figure 1: klab specification for Flapper.kick (dss.md).

But the version of flap.sol provided by dss-deploy-scripts only provides the function:

function kick(address gal, uint lot, uint bid)

Figure 2: Flapper.kick declaration provided by dss-deploy-scripts (flap.sol).

Exploit Scenario
A developer/tester deploys MCD to their desired network using dss-deploy-scripts ,
assuming the core contracts are verified by the kspecs that k-dss provides. However, the
kspecs provided by k-dss are out of sync with the contracts deployed by
dss-deploy-scripts . This does not become apparent until after deployment, leaving the
user questioning the validity of the code deployed.

Recommendation
Update the k-dss repository to link against the current master branch of each system
component. Alternatively, document the version of each MCD module that is verified.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 17

https://github.com/makerdao/dss/blob/057fdfa5e974dca4dee5f9238f61a0f0ce2aa9c4/src/flap.sol
https://github.com/makerdao/dss/blob/880d592091d5582adc2fda0bdb56c76e3b7457c3/src/flap.sol
https://github.com/dapphub/k-dss/blob/8b42bf0223eddf1c0906945d40c62223a5dda184/src/dss.md
https://github.com/makerdao/dss/blob/f67e06ac1da5a782bfe988339c00d3be141cc3f1/src/flap.sol#L101

4. auth-checker’s use of checkRely is incomplete
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-MCD-004
Target: scripts/auth-checker

Description
The auth-checker script checks permissions settings within a deployment. Specifically, the
script’s checkRely method checks the presence or absence of an edge within a contract’s
wards mapping. The problem: There are edges that must be present that are not checked.
If the edges are missing, all privileged access to a contract could be revoked, and that
contract would be locked from future privileged actions.

Applying checkRely to all pairs of variables within out/addresses.json results in the
graph in Figure 1 on the next page. There are three edges in this graph that are not
checked by the auth-checker script. They are:

 DEPLOYER → FAUCET
MCD_JOIN_DAI → MCD_DAI
 MCD_POT → MCD_VAT

We presume the first edge is needed only for testing. However, the DaiJoin contract needs
“ DEPLOYER → FAUCET ” to call the Dai contract’s mint and burn methods. Similarly, the Pot
contract needs “ MCD_POT → MCD_VAT ” to call the Vat contract’s suck method. Therefore, the
auth-checker script should verify that these edges are present.

Exploit Scenario
A change is made to the deployment process, causing the Pot contract to lose privileged
access to the Vat contract. The auth-checker script misses this failure, and the Pot contract
is unable to mint Dai. Confidence in the system is lost.

Recommendation
Short term, adjust the auth-checker script so that it verifies the presence of the three
edges mentioned above.

Long term, consider ways that MCD’s numerous permissions mechanisms might be
consolidated. (See TOB-MCD-005 .) Consolidating the permissions mechanisms would make
it easier to verify that they have been configured correctly. This would, in turn, make it less
likely for similar bugs to arise in the future.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 18

Figure 1: The result of applying checkRely to all pairs of variables within out/addresses.json .

An edge from X to Y indicates that checkRely(X,Y) results in AUTHED (0x00...01) .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 19

5. Too many notions of “permission”
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-MCD-005
Target: DSRoles, DSAuth, DSAuthority, DSToken, dss/src/*.sol

Description
Numerous mechanisms are used to enforce permissions within MCD:

● Within any instance of a DSRoles contract, four distinct mappings enforce
permissions. Those mappings involve users that have roles, and these roles have
capabilities.

● Within any token, an inherited isAuthorized method is used to enforce
permissions. The isAuthorized method, in turn, uses a DSAuthority contract to
enforce permissions via its canCall method.

● Within the Cat, Dai, End, Flap, Flip, Flop, Jug, Pot, Spot, Vat, and Vow contracts, a
wards mapping enforces permissions.

● Within the Vat contract, a can / wish mapping is used in addition to the wards
mapping to enforce permissions.

It appears that many (if not all) of these permissions mechanisms could be implemented
using one instance of a DSGuard contract. However, it also appears the DSGuard contract
is used only for testing.

Exploit Scenario
A developer, Alice, adds a function to a contract that requires permission. In granting
permission to contract X to call the function, Alice inadvertently grants permission to
contract Y to call the function. Alice’s error is the result of confusion over MCD’s many
permissions mechanisms. Eve exploits the flaw for financial gain.

Recommendation
Short term, consider which of the above permissions mechanisms might be consolidated.
To be clear, we’re not suggesting that you change any of the permissions themselves, just
how they are implemented.

Long term, consider whether using one instance of a DSGuard contract could meet your
permissions needs.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 20

6. ERC20 transferFrom o�ten does not follow spec
Severity: Informational Difficulty: Low
Type: Access Controls Finding ID: TOB-MCD-006
Target: tokens.sol, dai.sol, base.sol, token.sol

Description
If the message sender is the source of a transferFrom call, approval will not be considered,
and the transfer will initiate immediately. This breaks invariants expected of transferFrom .

Traditionally, the transferFrom method moves tokens from one account to another,
provided the source account has approved the sender to send such an amount using the
ERC20 method approve . However, some ERC20 tokens in the MCD do not require approval
if the sender is the source of the account:

 if (src != msg.sender) {
 require(_approvals[src][msg.sender] >= wad,
 "ds-token-insufficient-approval");
 _approvals[src][msg.sender] = sub(_approvals[src][msg.sender], wad);
 }

Figure 1: transferFrom allowance checks (dss-deploy/src/tokens.sol#L43-L46).

The following contracts harbor this problem:
● d ss/src/dai.sol#L74-L77
● dss-deploy/src/tokens.sol#L43-L46

● ds-token/src/base.sol#L51-L54

● ds-token/src/token.sol#L49-L52

Although it may seem intuitive to allow the owner of the account balance to transfer funds
without approval, external tooling may rely on invariants which are now broken.

Exploit Scenario
Alice sends a transaction which invokes transferFrom , assuming it will fail if no
allowance/approval was set beforehand. Instead, the transfer succeeds if the source of the
funds is also msg.sender . Alice’s funds are lost.

Recommendation
Short term, remove the check that allows transferFrom to succeed without approval if src
refers to msg.sender . Update all code which depended on transferFrom not expecting
approval in this case.

Long term, review the ERC20 specification and verify your contracts meet the standard.
When interfacing with external ERC20 tokens, be wary of popular tokens that do not
properly implement the standard (e.g., many tokens do not include return values for
approve , transfer , transferFrom , etc.).

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 21

https://github.com/makerdao/dss-deploy/blob/8a18619ec649c0e7469230d663480b754064bff4/src/tokens.sol#L43-L46
https://github.com/makerdao/dss/blob/526fa6afb9ea771f846b895ae0aee361876f2bdb/src/dai.sol#L74-L77
https://github.com/makerdao/dss/blob/526fa6afb9ea771f846b895ae0aee361876f2bdb/src/dai.sol#L74-L77
https://github.com/makerdao/dss-deploy/blob/8a18619ec649c0e7469230d663480b754064bff4/src/tokens.sol#L43-L46
https://github.com/dapphub/ds-token/blob/cee36a14685b3f93ffa0332853d3fcd943fe96a5/src/base.sol#L51-L54
https://github.com/dapphub/ds-token/blob/cee36a14685b3f93ffa0332853d3fcd943fe96a5/src/token.sol#L49-L52

References

● ERC20 Token Standard
● Missing return value bug—at least 130 tokens affected
● Explaining unexpected reverts starting with Solidity 0.4.22

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 22

https://eips.ethereum.org/EIPS/eip-20
https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca
https://medium.com/@chris_77367/explaining-unexpected-reverts-starting-with-solidity-0-4-22-3ada6e82308c

7. Dai Savings Rate locking is ine�fective
Severity: Medium Difficulty: Medium
Type: Access Controls Finding ID: TOB-MCD-007
Target: pot.sol

Description
The Dai Savings Rate (DSR) is intended to allow people to lock Dai and thereby earn
interest. However, Dai earns interest only when it is locked in the Pot contract. This
encourages the use of nonstandard ERC20 proxies for Dai. The proxy token keeps the
underlying asset locked and earning interest, but still available for trading. These proxies
are not under the control of MakerDAO and can pose a threat to the ecosystem.

Exploit Scenario
Bob holds Dai and wants to earn interest without sacrificing liquidity. He deposits his Dai
with a popular contract written by Alice. The contract locks it and gives him a new ERC20
token, “ADai,” which he can later redeem for his original Dai, plus interest. However, this
contract is buggy, and he actually loses all of his holdings to a hacker. He vows never to use
Dai again.

Recommendation
Don’t require “locking” to earn interest on Dai. Instead of keeping Dai Savings Rate logic in
pot.sol , apply it to the ERC20 balance whether it’s locked or not. Alternatively, implement
liquidity controls such as time-restricted withdrawals so “locking” is more meaningful.

Going forward, avoid any situation where using Dai through a third-party smart contract is
preferable to using Dai through a MakerDAO smart contract. This will dramatically reduce
security risks in untrusted, third-party code and prevent many scams that impersonate
legitimate Dai tooling.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 23

8. Race condition in the ERC20 “approve” function may lead to token the�t
Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-MCD-008
Target: dai.sol, base.sol, token.sol

Description
A known race condition in the ERC20 standard, on the approve function, could lead to
token theft.

The ERC20 standard describes how to create generic token contracts. Among others, an
ERC20 contract defines these two functions:

● transferFrom(from, to, value)
● approve(spender, value)

These functions give permission to a third party to spend tokens. Once the function
approve(spender, value) has been called by a user, spender can spend up to the value
of the user’s tokens by calling transferFrom(user, to, value).

This schema is vulnerable to a race condition, where the user calls approve a second time
on a spender that has already been allowed. If the spender sees the transaction containing
the call before it has been mined, the spender can call transferFrom to transfer the
previous value and still receive the authorization to transfer the new value.

Exploit Scenario

1. Alice calls approve(Bob, 1000) . This allows Bob to spend 1,000 tokens.
2. Alice changes her mind and calls approve(Bob, 500) . Once mined, this will

decrease to 500 the number of tokens that Bob can spend.
3. Bob sees the second transaction and calls transferFrom(Alice, X, 1000) before

approve(Bob, 500) has been mined.
4. If Bob’s transaction is mined before Alice’s, Bob will transfer 1,000 tokens. But once

Alice’s transaction is mined, Bob can call transferFrom(Alice, X, 500) . Bob has
transferred 1,500 tokens even though this was not Alice’s intention.

Recommendation
One common workaround is to use two non-ERC20 functions, allowing a user to increase
and decrease the approval (see increaseApproval and decreaseApproval of
StandardToken.sol#L63-L98). Ensure users are aware of this extra functionality and
encourage them to make use of it when appropriate.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 24

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/39370ff69037ae19dba8b746c04ceaf049f563a3/contracts/token/ERC20/StandardToken.sol#L63-L98

9. Race condition involving Dai “permit” nonces
Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-MCD-009
Target: dai.sol

Description
A Dai permit call is essentially a restricted form of an approve call that can be signed 3

offline and submitted by a third party. Each signed permit call features a nonce. The
nonces must be used in strictly increasing order (i.e., Alice’s nonce n can only be used once
nonces 0 through n-1 have been used). However, such a mechanism is susceptible to
attack.

In the following discussion, we assume Alice does not have access to the blockchain;
otherwise, she could call approve directly.

Suppose Eve holds a permit call signed by Alice with nonce n, but Eve has not yet
submitted the call to the blockchain. By holding onto the call, Eve prevents permit calls
signed by Alice with higher nonces from being processed.

Alice’s only means of recourse appears to be to sign a new permit call P’, also with nonce n,
and to ask Bob to submit P’ on her behalf. However, upon seeing P’ submitted to the
blockchain, Eve can then submit P, causing P’ to appear invalid (because it reuses the nonce
used by P). Alice would then have to sign a third permit call P’’ to undo the effects of P
and/or redo the effects of P’. She would have to again ask Bob to submit P’’ on her behalf.

Exploit Scenario
Eve holds onto a permit call signed by Alice, authorizing Eve to spend on Alice’s behalf. By
holding onto the call, Eve prevents permit calls signed by Alice with higher nonces from
being processed. Eventually Alice gets tired of waiting and signs a new permit call revoking
Eve’s spending privileges. But by then, Alice’s funds have already been drained.

Recommendation
Short term, implement mechanisms to watch for abuses of the permit method, as
described above.

Long term:

1. Rather than maintain one nonce per Dai holder, maintain one nonce per Dai
holder-spender pair, and

2. Add a second type of signed message (analogous to permit) that allows a Dai holder
to set a spender’s nonce to the max of the nonce’s current value and a constant
(e.g., like in Figure 1).

3 The permit method can set a spender’s allowance to the minimum or maximum allowable, but
nothing in between. In this way, permit does not offer the full generality of approve .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 25

Such messages would allow a Dai holder to invalidate a nonce without having to worry
whether the corresponding permit message had already been submitted.

function invalidate_nonces(address holder, address spender, uint256 new_nonce,
 uint8 v, bytes32 r, bytes32 s) public
{
 ...
 uint256 nonce = nonces[holder][spender];
 nonces[holder][spender] = max(nonce, new_nonce);
 ...
}

Figure 1: Hypothetical “ invalidate_nonces ” implementation.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 26

10. Anyone can approve themselves to take Dai owned by address 0
Severity: Low Difficulty: Low
Type: Cryptography Finding ID: TOB-MCD-010
Target: dai.sol

Description
The permit method in Dai.sol uses ecrecover to check the signer of a pre-signed approval
message. ecrecover returns 0 on an invalid signature rather than reverting. If permit is
called with an invalid signature and a holder of 0, it will execute as if the signature is valid.
This means any tokens sent to the address 0 (e.g., for burning) can be claimed by anyone
who first calls permit , then transferFrom .

Exploit Scenario
An ICO uses 0 as a proof-of-burn address for buying tokens with Dai. The tokens they
expect to be burned are actually stolen by an enterprising hacker who abuses permit .

Recommendation
In the short term, modify permit to explicitly disallow having a holder of 0.

Long-term, carefully audit all uses of ecrecover for authentication. Ensure that its failure
case is explicitly handled. Consider replacing it with an ECDSA library .

References

● Solidity Documentation
● Dai transfers to 0

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 27

https://docs.openzeppelin.com/contracts/2.x/api/cryptography#ecdsa
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#mathematical-and-cryptographic-functions
https://etherscan.io/token/0x89d24a6b4ccb1b6faa2625fe562bdd9a23260359?a=0x00

11. “file” methods do not revert when “what” argument is unrecognized
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-MCD-011
Target: DSS contracts

Description
Many of the DSS contracts feature one or more file methods for setting contract
parameters. The contract parameter name when present (see TOB-MCD-012) is called
what . None of the file methods revert when the what argument is unrecognized. So,
setting a non-existent parameter appears to succeed.

As an example, End’s file implementation appears in Figure 1. A better implementation,
one that reverts when the what argument is unrecognized, appears in Figure 2.

function file(bytes32 what, address data) external note auth {
 if (what == "vat") vat = VatLike(data);
 if (what == "cat") cat = CatLike(data);
 if (what == "vow") vow = VowLike(data);
 if (what == "spot") spot = Spotty(data);
}

Figure 1: End’s actual file implementation (dss/src/end.sol#L242-L247).

function file(bytes32 what, address data) external note auth {
 if (what == "vat") vat = VatLike(data);
 else if (what == "cat") cat = CatLike(data);
 else if (what == "vow") vow = VowLike(data);
 else if (what == "spot") spot = Spotty(data);
 else revert();
}

Figure 2: A better End file implementation.

Exploit Scenario
An MCD administrator wishes to change an MCD parameter using a file method, but the
administrator misspells the parameter name. The call appears to succeed, leading the
administrator to believe the parameter has been changed when it has not.

Recommendation
Short term, have file methods revert when the what argument is unrecognized, as shown
in Figure 2.

Long-term, incorporate fuzzing or symbolic execution into your CI, and regularly review the
results. We found this solution when using Manticore, which produced successful calls to
file methods with garbage what arguments.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 28

https://github.com/makerdao/dss/blob/bf3b87518d84fc845b75e74de51f94a8800f14d0/src/end.sol#L242-L247

12. Spotter’s “file” method lacks a “what” argument
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-MCD-012
Target: spot.sol

Description
Many of the DSS contracts feature one or more file methods for setting contract
parameters. Nearly all of those methods feature a what argument that contains the
parameter name. However, one of Spotter’s file methods lacks such an argument.
Consequently, the method’s signature is very similar to that of another file method,
creating the potential for confusion.

The Spotter file method that lacks a what argument appears in Figure 1. The Spotter file
method with a similar signature appears in Figure 2.

function file(bytes32 ilk, address pip_) external note auth {
 ilks[ilk].pip = PipLike(pip_);
}

Figure 1: Spotter file method that lacks a what argument (dss/src/spot.sol#L71-L73).

function file(bytes32 what, uint data) external note auth {
 if (what == "par") par = data;
}

Figure 2: Spotter file method with a signature similar to Figure 1 (dss/src/spot.sol#L74-L76).

Exploit Scenario
An MCD administrator wishes to change the value of Spotter’s par parameter. However,
the new value is encoded as an address instead of a uint, due to a bug in the
administrator’s client software. As a result, the administrator instead sets the pip value for
a non-existent ilk called par .

Recommendation
Short term, add a what argument to the file method in Figure 1.

Long-term, try to ensure consistency among function signatures as new functions are
introduced to the code base.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 29

https://github.com/makerdao/dss/blob/bf3b87518d84fc845b75e74de51f94a8800f14d0/src/spot.sol#L71-L73
https://github.com/makerdao/dss/blob/bf3b87518d84fc845b75e74de51f94a8800f14d0/src/spot.sol#L74-L76

13. Documentation of Dai Savings Rate is inaccurate
Severity: Informational Difficulty: N/A
Type: Documentation Finding ID: TOB-MCD-013
Target: Whitepaper

Description
The Dai Savings Rate (DSR) does not constrict Dai supply. However, both the whitepaper
and the MakerDAO Medium post (which currently appear first in an online search for “Dai
Savings Rate”) state that it does. This could lead Dai users to misunderstand the DSR’s
function.

Recommendation
Update both the Medium post and the whitepaper to clarify the function of the DSR.

Regularly review all public documentation for accuracy as Dai functionality is updated.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 30

https://makerdao.com/en/whitepaper/#dai-savings-rate-adjustments
https://medium.com/makerdao/dai-reward-rate-earn-a-reward-from-holding-dai-10a07f52f3cf

14. A Denial of ervice attack can obstruct Flop auctions
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-MCD-013
Target: flop.sol, vat.sol, vow.sol

Description
In order to initiate a Flop auction, the Vow contract requires that it have a zero Dai balance
within the Vat. An unprivileged user can send a small amount of Dai to the Vow within the
Vat. In doing so, the user prevents the Vow from initiating a Flop auction until it calls heal .

The code for Vow’s flop method appears in Figure 1. The crucial bit is the line that requires
vat.dai(address(this)) == 0 . The code for the Vat’s move method appears in Figure 2.
Note that anyone can call the move method. Thus, an unprivileged user can cause the
required condition to fail simply by calling move .

function flop() external note returns (uint id) {
 require(sump <= sub(sub(vat.sin(address(this)), Sin), Ash));
 require(vat.dai(address(this)) == 0);
 Ash = add(Ash, sump);
 id = flopper.kick(address(this), uint(-1), sump);
}

Figure 1: Vow’s flop method (dss/src/vow.sol#L119-L124).

function move(address src, address dst, uint256 rad) external note {
 require(wish(src, msg.sender));
 dai[src] = sub(dai[src], rad);
 dai[dst] = add(dai[dst], rad);
}

Figure 2: The Vat’s move method (dss/src/vat.sol#L144-L148).

Exploit Scenario
Eve runs a stable coin that competes with Dai. Whenever Eve sees a call to vow.flop
posted to the blockchain, Eve posts a call of the form vat.move(…, vow, …) with a high
gas price and a trivial amount of Dai. The high gas price causes Eve’s transactions to be
mined before those involving vow.flop . By staving off calls to vow.flop for extended
periods of time, Eve causes bad debt to remain uncovered, and confidence in Dai declines.

Recommendation
Short term, eliminate the requirement that vat.dai(address(this)) == 0 .

Long term, investigate whether heal should be called upon entry to flop .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 31

https://github.com/makerdao/dss/blob/bf3b87518d84fc845b75e74de51f94a8800f14d0/src/vow.sol#L119-L124
https://github.com/makerdao/dss/blob/bf3b87518d84fc845b75e74de51f94a8800f14d0/src/vat.sol#L144-L148

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user information is at risk, exploitation would be bad for

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 32

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 33

B. Non-security related findings
This appendix contains findings that do not have immediate security implications.

● load-addresses seems to try to do something that is impossible. The
dss-deploy-scripts README states, “The load-addresses script reads contract
addresses from out/addresses.json and exports them as environment variables.”
However, in bash at least, this is not possible. (See Can I export a variable to the
environment from a bash script without sourcing it?)

● Many functions do not follow the check-effects-interactions pattern. Slither
reports several functions as being reentrant (e.g., ESM.fire() in Figure 1). A
reentrant function is not vulnerable if there is a guarantee that any contract called
by the function is trusted (e.g., end in Figure 1 is trusted). However, a better
approach is to follow the check-effects-interactions pattern and avoid the problem
altogether.

 function fire() external note {
 require(!fired, "esm/already-fired");
 require(full(), "esm/min-not-reached");

 end.cage();

 fired = true;
 }

Figure 1: ESM.fire() (esm/src/ESM.sol#L57-L64).

● Significant code duplication exists among the contracts. For example, each of
the Cat, Dai, End, Flap, Flip, Flop, Jug, Pot, Spot, Vat, and Vow contracts feature the
code in Figure 2. In another extreme example, a 23-line rpow function appears
essentially unchanged in both the Jug and Pot contracts.

 mapping (address => uint) public wards;
 function rely(address usr) public note auth { wards[usr] = 1; }
 function deny(address usr) public note auth { wards[usr] = 0; }
 modifier auth { require(wards[msg.sender] == 1); _; }

Figure 2: Code duplicated across the contracts in dss/src/*.sol .

● The field names of Flipper.Bid and Flippy.Bid do not match. The definitions of
Flipper.Bid and Flippy.Bid are given in Figures 3 and 4, respectively. The
definitions differ in their names for the sixth field, usr vs. urn .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 34

https://stackoverflow.com/questions/16618071/can-i-export-a-variable-to-the-environment-from-a-bash-script-without-sourcing-i
https://stackoverflow.com/questions/16618071/can-i-export-a-variable-to-the-environment-from-a-bash-script-without-sourcing-i
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://github.com/makerdao/esm/blob/e0a85d6215cec2a7786c1dcaee188a3ff393710d/src/ESM.sol#L57-L64
https://github.com/makerdao/dss/tree/7645fd00eedbad700a89d03e18dd2aa397c3d743/src

 struct Bid {
 uint256 bid;
 uint256 lot;
 address guy; // high bidder
 uint48 tic; // expiry time
 uint48 end;
 address usr;
 address gal;
 uint256 tab;
 }

Figure 3: Flipper.Bid (dss/src/flip.sol#L49-L58).

 struct Bid {
 uint256 bid;
 uint256 lot;
 address guy;
 uint48 tic;
 uint48 end;
 address urn;
 address gal;
 uint256 tab;
 }

Figure 4: Flippy.Bid (dss/src/end.sol#L61-L70).

● WETH9_ does not check for overflows (e.g., does not use SafeMath). For
example, WETH9_.deposit() appears in Figure 5. The lack of overflow checks could,
say, cause Ether or tokens to be lost. This code appears to be used only for testing.
Take care to ensure it is not used elsewhere.

 function deposit() public payable {
 balanceOf[msg.sender] += msg.value;
 emit Deposit(msg.sender, msg.value);
 }

Figure 5: WETH9_.deposit() (ds-weth/src/weth9.sol#L34-L37).

● RestrictedTokenFaucet does not check that ERC20 transfers succeed. For
example, RestrictedTokenFaucet.gulp(...) appears in Figure 6. Failing to check
that a transfer succeeds could make it impossible for an Ethereum address to draw
from the faucet.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 35

https://github.com/makerdao/dss/blob/7645fd00eedbad700a89d03e18dd2aa397c3d743/src/flip.sol#L49-L58
https://github.com/makerdao/dss/blob/7645fd00eedbad700a89d03e18dd2aa397c3d743/src/end.sol#L61-L70
https://github.com/dapphub/ds-weth/blob/dfada5bca7a00046c1ddc37c0c43106a8c0a4e5a/src/weth9.sol#L34-L37

 function gulp(address gem) external {
 require(list[address(0)] == 1 || list[msg.sender] == 1,
 "token-faucet/no-whitelist");
 require(!done[msg.sender][gem],
 "token-faucet/already-used_faucet");
 require(ERC20Like(gem).balanceOf(address(this)) >= amt,
 "token-faucet/not-enough-balance");
 done[msg.sender][gem] = true;
 ERC20Like(gem).transfer(msg.sender, amt);
 }

Figure 6: RestrictedTokenFaucet.gulp(...)
(token-faucet/src/RestrictedTokenFaucet.sol#L35-L41).

● The code that initiates Flop auctions is fragile. The call in the Vow contract that

initiates a Flop auction is:

id = flopper.kick(address(this), uint(-1), sump);

If no bid is placed in the auction, the Flop contract will attempt to mint uint(-1)
MKR for the Vow contract (i.e., address(this) in the above call). Such an attempt
will fail, as the MKR contract checks for overflows. However, this seems like a fragile
way of avoiding such undesirable behavior.

● file and join in the Pot contract should call drip. To ensure the most accurate

calculation of chi , calling the Pot contract’s file method should invoke drip before
updating dsr . Otherwise, the update can be effectively retroactive. Similarly, drip
should be called on join to make sure pie is calculated with maximum accuracy.

● Updating the Stability Fee should call drip. Similarly, Jug’s file method should

invoke drip before updating duty .

● Requiring that oracle addresses have distinct upper 8 bits may be overly
restrictive. The median contract currently requires that addresses of all oracles
have distinct upper 8 bits (see Figure 7). However, it is conceivable that the
addresses of two oracles could have the same upper 8 bits. Thus, this condition may
be overly restrictive.

 uint8 slot = uint8(uint256(signer) >> 152);
 require((bloom >> slot) % 2 == 0, "Oracle already signed");
 bloom += uint256(2) ** slot;

Figure 7: median.sol#L85-L87 .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 36

https://github.com/makerdao/token-faucet/blob/d7349d13f6cd83e8d0aa21e93544988fab0b6b24/src/RestrictedTokenFaucet.sol#L35-L41
https://github.com/makerdao/median/blob/a5f39fab14f3b3bcd9576072da59984af8952606/src/median.sol#L85-L87

● The toll modifier in median.sol and osm.sol is unlikely to be effective. The files
median.sol and osm.sol feature a toll modifier that tries to restrict certain view
functions only to whitelisted contracts. However, since the protected data resides on
a public blockchain, a determined adversary could extract the data and present it to
their own contracts.

● The DssCdpManager can write to the 0th CDP’s next field. Multiple, doubly
linked lists use the 0th CDP to represent their start and end. Thus, writing to the 0th
CDP’s next field is, at best, inconsistent. However, such a write can occur via lines in
Figures 8 and 9.

 list[list[cdp].prev].next = list[cdp].next;

Figure 8: DssCdpManager.sol#L121 .

 list[last[dst]].next = cdp;

Figure 9: DssCdpManager.sol#L138 .

● The “tick” function can be called on an uninitialized Flip or Flop bid. Flip’s and
Flop’s tick methods should require that bids[id].guy != address(0) as other
methods that operate on bids do. This will reduce the possibility that someone can
successfully call tick with the wrong id .

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 37

https://github.com/makerdao/dss-cdp-manager/blob/b0dfe6a02c876a08c8ff57c8561bd591d4c8320f/src/DssCdpManager.sol#L121
https://github.com/makerdao/dss-cdp-manager/blob/b0dfe6a02c876a08c8ff57c8561bd591d4c8320f/src/DssCdpManager.sol#L138

C. Measuring klab specifications with Slither
This appendix describes scripts in which MCD contracts can be analyzed with Slither , a
Solidity static analysis framework. These scripts identify TOB-MCD-003 and show that the
behavior of functions behind all calls that use ABIEncoderV2 are tested by klab
specifications.

Sample output:

[...]
140/456 functions are directly covered by a kspec
4/456 functions are reached by a kspec
312/456 functions are not reached by a kspec

Could not find function for klab spec:Flapper.kick(uint256,uint256)
Could not find 1/244 functions referenced in klab spec.

Overall results of the analysis show that (for non-test contracts):

● 30.7% of the functions are directly covered by a kspec.
● 1.75% of functions are otherwise reachable via calls from a kspec’d function.
● 67.54% of functions are not reached by a kspec.

Slither identified that kspec coverage was generally polarizing: Contracts with kspecs
typically have function coverage close to 100%, while contracts without kspecs typically
have function coverage close to 0%.

When assessing previously found vulnerabilities, we found that having kspecs associated
with contracts did not ensure the contracts werere bug-free. Specifically, we observed that,
despite all functions in Pot and End having associated kspecs, critical bugs such as instant
Dai interest generation and collateral theft during the end process remained. 4 5

Contract coverage shown below indicates that the dss module is well-specified; however,
contracts outside of dss would benefit from increased specification.

4 Earn free DAI interest (inflation) through instant CDP+DSR in one tx : The Pot is susceptible to
instant interest generation, which unbalances the Dai-collateral relationship.
5 Steal collateral during ̀ end` process, by earning DSR interest after ̀ flow` : The Pot and End
contracts are susceptible to collateral theft.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 38

https://github.com/crytic/slither
https://hackerone.com/reports/665798
https://hackerone.com/reports/672664

Name Covered
(%)

Covered
(direct)

Covered
(indirect)

Not
Covered

BAT, CatFab, DGD, DSChief,
DSChiefApprovals, DSChiefFab,
DSGuard, DSGuardFactory,
DSPause, DSPauseProxy, DSProxy,
DSProxyCache, DSProxyFactory,
DSRoles, DSStop, DSThing, DaiFab,
DaiJoinFab, DssDeploy,
DssProxyActions, ESM, ETHJoin,
EndFab, FlapFab, FlipFab, FlopFab,
GNT, GemBag, GemJoin1,
GemJoin2, GemJoin3, GemJoin4,
GovActions, GovPollingGenerator,
JugFab, LineSpell, Median,
MedianBATUSD, MedianDGDUSD,
MedianETHUSD, MedianGNTUSD,
MedianOMGUSD, MedianREPUSD,
MedianZRXUSD, MultiLineSpell,
Multicall, MulticallHelper, OMG,
OSM, PauseFab, PotFab,
ProxyRegistry, REP,
RestrictedTokenFaucet, SpotFab,
Spotter,
TestchainPauseProxyActions,
TokenFaucet, Value, VatFab,
VoteProxy, VoteProxyFactory,
VowFab, ZRX

0% 0 0 *

DSMath 16.67% 0 2 10

DSTokenBase 16.67% 0 1 5

DSAuth 33.33% 0 1 2

DSToken 45.45% 5 0 6

DSValue 50% 2 0 2

Flapper 90% 9 0 1

Cat, Dai, DaiJoin, End, Flipper,
Flopper, GemJoin, Jug, Pot, Vat, Vow

100% * * 0

Note: The contracts shown above include all compiled contracts with non-empty function
bodies in the dss-deploy-scripts repository.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 39

Running the scripts
The MCD project reuses contract names and therefore requires updates to crytic-compile
and Slither for out-of-the-box use. To work around this issue, we refactored contracts that
had the same name with an additional suffix— “_DUP_<contractname>”—to avoid naming
collisions. For example, we renamed VatLike in cat.sol to VatLike_DUP_CAT .

After refactoring, run.py and analysis.py were used to export a compiled code archive
for Slither analysis. Basic metrics regarding functions not reachable/resolved from klab
specifications are output with the script, while detectors can be run on the archive
exported to ./EXPORTED_ARCHIVE.zip .

To set up the script, have the latest versions of Slither and crytic-compile installed from
GitHub and then install the tabulate dependency using the following command:

pip3 install tabulate

After installing tabulate, clone the dss-deploy-scripts repository, and unzip the provided
script archive in the root of the repository. Afterwards, open a terminal, change directory to
the root of the repository, and execute the following command:

python3 ./scripts/mcd-slither-analysis/run.py

This will analyze all contracts and provide basic coverage metrics.

Note : Upon running the analysis, the EXPORTED_ARCHIVE.zip containing the compiled
contracts will be created in the current working directory. Subsequent execution of the
analysis script will opt to use this exported archive as cache instead of recompiling. Due to
the prerequisite contract name refactoring, the exported archive generated by Trail of Bits
was included to avoid any refactoring requirement from the Maker Foundation team if they
wish to quickly run the script. Example output has also been provided.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 40

https://github.com/crytic/crytic-compile
https://github.com/crytic/slither

D. Symbolic exploration of DSS with Manticore
Manticore is a symbolic execution tool for analysis of smart contracts and binaries. We
used Manticore to subject the MCD contracts to multiple symbolic transactions. This
appendix summarizes our approach and the results of our analysis.

We directed our efforts toward the DSS contracts (e.g., Cat, Jug, Vat) as these represent the
“core” around which the larger MCD system is built. Later in the assessment, we also
incorporated the DssCdpManager.

Our Manticore script deploys the MCD contracts in a manner modeled after the
dss-deploy-scripts repository. The Manticore script then symbolically executes some
number of transactions against some subset of those contracts.

Given the intensity of our workload, we directed Manticore’s search in a couple of ways:

● First, we did not allow Manticore to perform rely or deny calls following
deployment. We had already exposed as much attack surface as possible, and there
was little (if any) attack surface that rely could additionally expose. Conversely,
deny could only reduce attack surface.

● Second, whenever a call required an ILK, we instructed Manticore to use either “DAI”
or “ETH,” corresponding to the two types of collateral we deployed. This saved
Manticore from having to guess these values.

Manticore has a set of detectors for common Ethereum-related errors. We enabled all of
these. In addition, we instrumented the DSS contracts with code to check for potential
MCD-specific errors. Examples:

● The Vat features an init method for an ILK. We added an inited field to an Ilk to
indicate that the init function had been called for that Ilk. We then sprinkled
assert statements throughout the Vat to verify that, whenever an Ilk was used, its
inited flag was set, i.e., it had been initialized. We were unable to get any of these
assertions to fail, suggesting that the Vat uses only Ilks that have been initialized.

● We added the invariants function in Figure 1 to the DssCdpManager, and
sprinkled calls to invariants throughout that contract. In certain calls, e.g., those
involving give , the assertion that list[0].next == 0 failed.

 function invariants() internal view {
 assert(urns[0] == address(0));

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 41

https://github.com/trailofbits/manticore

 assert(list[0].prev == 0);
 assert(list[0].next == 0);
 assert(owns[0] == address(0));
 assert(ilks[0] == bytes32(0));
 }

Figure 1: A function added to DssCdpManager.

While examining the successful runs produced by Manticore, we noticed some
peculiar-looking calls to file . This led to TOB-MCD-011 and TOB-MCD-012 . In addition, use
of MCD-specific property tests like those described above led to entries in Appendix B
concerning the DssCdpManager and Flip’s and Flop’s tick functions.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 42

E. Converting unit tests to property tests with Echidna
Echidna is a property testing tool for Ethereum smart contracts. We used Echidna to
generalize existing MakerDAO unit tests to cover a more diverse set of behaviors.

We generalized existing tests by taking static values and making them function parameters,
then modifying ds-test ’s fail to cause an assertion violation. This means that Echidna can
execute these tests with random parameters, and should any assertions fail, alert with the
parameters used.

 function test_join(uint amt0, uint amt1) public {
 setUp();
 amt1 = amt1 % amt0;
 address urn = address(this);
 gold.mint(amt0);
 assertEq(gold.balanceOf(address(this)), amt0);
 assertEq(gold.balanceOf(address(gemA)), 1000 ether);
 gemA.join(urn, amt0);
 assertEq(gold.balanceOf(address(this)), 0 ether);
 assertEq(gold.balanceOf(address(gemA)), 1000 ether +
amt0);
 gemA.exit(urn, amt1);
 assertEq(gold.balanceOf(address(this)), amt1);
 assertEq(gold.balanceOf(address(gemA)), 1000 ether + amt0
- amt1);
 }

Figure 1: A modified version of test_join from vat.e.sol.

This allowed us to take the existing test engineering and use it to achieve greater coverage.
We can turn what was previously a single test case into thousands of different test cases
with minimal effort.

Running the Echidna analysis
We added ABIv2 support to Echidna to support this audit. We are working to get this
support upstreamed into hevm , and then we will remove it from our own codebase and
make an official release.

In the interim, build the echidna-test from GitHub and invoke echidna-test vat.e.sol
--config dai_conf.yaml to run the tests.

© 2019 Trail of Bits Multi-Collateral Dai Security Review | 43

https://github.com/crytic/echidna

